بیا مهندسی شیمی را بهتر ببینیم

علم شیمی

یدومتری

یدومتری

در تیتراسیونهای معمولی مانند تیتراسیون های خثی شدن، به عنوان مثال یک اسید باغلظت نامعین، به وسیله بازی با غلظت کاملا، معین تیتر می شود. نقطه ی هم ارزی، نقطه ای است که در آن کاملاً تعداد یونهای H+ با تعداد یونهای OH- هم ارز یا برابر می شود. یک شناساگر به محلول اضافه می شود که در نقطه ی pH خنثی تغییر رنگ می دهد. در این زمان افزودن حجم باز قطع می شود و از روی مقدار حجم مصرفی باز، غلظت اسید باحجم معین را می توان محاسبه نمود.
تیتراسیون های اکسایش کاهش بر اساس اکسایش یا کاهش مواد بنا شده اند. فرآیند اکسیداسیون (اکسایش)فرآیندی است که در آن یک جسم (اکسید کننده) الکترون می‌گیرد و عدد اکسایش یک اتم افزایش می‌یابد.
فرآیند احیا (کاهش)فرایندی است که در آن یک جسم (احیا کننده) الکترون از دست می‌دهد و عدد اکسایش یک اتم کاهش می‌یابد.
مثالی از واکنشهای اکسایش و کاهش
بر این اساس ، واکنش زیر یک واکنش اکسایش و کاهش می‌باشد. چون عدد اکسایش اتم S از صفر به +4 افزایش پیدا می‌کند و می‌گوییم گوگرد اکسید شده است و عدد اکسایش اتم O از صفر به -2 کاهش پیدا کرده است و می‌گوییم اکسیژن کاهیده شده است:

S + O2 → SO2

که در آن ، در طرف اول عدد اکسیداسیون هر دو ماده صفر و در طرف دوم ، عدد اکسیداسیون گوگرد در ترکیب +4 و اکسیژن ، -2 است.

اما در واکنش زیر اکسایش- کاهش انجام نمی‌شود، زیرا تغییری در عدد اکسایش هیچ یک از اتمها به وجود نیامده است:

SO2 + H2O → H2SO4

که در SO2 ، عدد اکسیداسیون S و O بترتیب ، +4 و -2 و در آب ، عدد اکسیداسیون H و O بترتیب +1 و -2 و در اسید در طرف دوم ، عدد اکسیداسیون H و S و O بترتیب ، +1 ، +4 و -2 است.
عامل اکسنده و عامل کاهنده
با توجه به چگونگی نسبت دادن اعداد اکسایش ، واضح است که نه عمل اکسایش و نه عمل کاهش بتنهایی انجام پذیر نیستند. چون یک ماده نمی‌تواند کاهیده شود مگر آن که هم‌زمان ماده ای دیگر ، اکسید گردد، ماده کاهیده شده ، سبب اکسایش است و لذا عامل اکسنده نامیده می‌شود و ماده‌ای که خود اکسید می‌شود، عامل کاهنده می‌نامیم.

بعلاوه در هر واکنش ، مجموع افزایش اعداد اکسایش برخی عناصر ، باید برابر مجموع کاهش عدد اکسایش عناصر دیگر باشد. مثلا در واکنش گوگرد و اکسیژن ، افزایش عدد اکسایش گوگرد ، 4 است. تقلیل عدد اکسایش ، 2 است، چون دو اتم در معادله شرکت دارد، کاهش کل ، 4 است.

در تیتراسیونهای اکسایش –کاهش نیز
اکثر شناساگرهای مورد استفاده در تیتراسیونهای اکسایش-کاهش خود عوامل اکسنده یا کاهنده اند که به جای حساس بودن به تغییر غلظت، نسبت به تغییر پتانسیل سیستم جواب می دهند. به این دلیل در عمل به جای تابع P مانند pH، پتانسیل الکترود سیستم را در محور yهای منحنی برای یک تیتراسیون اکسایش-کاهش رسم می کنند. این پتانسیل E از معادله ی نرنست به دست می آید.
فرم و شکل کلی منحنی تیتراسیونهای اکسایش-کاهش با تیتراسیونهای خنثی شدن تفاوتی ندارد.
به عنوان مثال می توان آهن II را با سریم IV به کمک یک تیتراسیون اکسایش-کاهش تیتر نمود و غلظت آن را تعیین کرد. واکنش اکسایش –کاهش انجام گرفته به صورت زیر است:
Ce4+ + Fe2+ Ce3+ + Fe3+
در واکنش فوق، سریم 4+ احیا می شود و به سریم 3+ تبدیل می شود. آهن 2+ نیز اکسید شده و به اهن 3+ تبدیل می شود. این واکنش سریع است و بلافاصله بعد از افزایش یک جزء، تعادل برقرار می شود و پتانسیل تمام اجزا از جمله پتانسیل یون سریم، یون آهن و پتانسیل شناساگر برابر می شود.یعنی در اینحالت:
E سیستم=ECe4+ = EFe2+ = EIn
پتانسیل سیستم را می توان به وسیله ی تعیین emf یک سلول مناسب مانند
SCE اا Ce4+, Ce3+, Fe3+, Fe2+ ا Pt
به طور تجربی اندازه گرفت.
برای بدست آوردن پتانسیل نقطه ی اکی والان، دو معادله ی پتانسیل نقطه ی پایان مربوط به ماده ی اکسید شده و احیا شده، هر دو را با هم جمع می کنیم.
Eeq=E0Fe3+ - 0.0592log[Fe2+]/[Fe3+]

Eeq=E0Ce4+ - 0.0592log[Ce3+]/[Ce4+]

2 Eeq=E0Fe3+ + E0Ce4+ - 0.0592log[Fe2+][Ce3+]/[Fe3+][Ce4+]
در نقطه ی هم ارزی، به همان نسبت که Fe3+ داریم، Ce3+ نیز داریم:
[Ce3+]=[Fe3+]
و به همان نسبتی که از واکنش برگشتی Fe2+ داریم، Ce4+ نیز داریم:
[Fe2+]= [Ce4+]

با قرار دادن این روابط در معادله ی فوق داریم:
Eeq= E0Fe3+ + E0Ce4+/2
پس اگر پتانسیل استاندارد تنها را بداینم، می توان پتانسیل نقطه ی اکی والان را به دست آورد. این برای حالتی است که تعداد الکترونها در هر دو نیم واکنش برابر است. در غیر اینصورت نسبت آنها تغییر می کند و باید مراحل محاسبه مانند فوق تکرار گردد.

به عنوان مثال:
سدیم تیوسولفات یک محلول احیا کننده است که در تیتراسیونهای اکسایش-کاهش به عنوان احیا کننده مورد استفده قرار می گیرد.
یکی از کاربردها، استفاده در واکنش یدومتری است:
2Na2S2O3 + I2 = Na2S4O6 + 2NaI
درواکنش فوق ید در حضور سدیم تیوسولفات احیا می شود.

پرمنگنات پتاسیم یا پتاسیم پرمنگنات یک اکسید کننده قوی است و در اکثر واکنشهای شیمیایی از جمله در تیتراسیونهای اکسایش -کاهش بعنوان عامل اکسید کننده استفاده می‌شود. نام آیوپاک آن پتاسیم منگنات (VII) است. وزن مولکولی پرمنگنات پتاسیم 158.04gr/mol، شکل آن منشوری ، جامد ، به رنگ ارغوانی تیره ، محلول آبی آن به رنگ صورتی و ترکیبی بدون بو است. این ترکیب بدلیل خاصیت اکسید کنندگی بسیار خورنده است.


یدومتری:
یون یدید یک عامل کاهنده ی نسبتاً موثری است که به طور وسیعی برای تجزیه ی اکسنده ها به کار می رود.
به طور کلی به واکنش هایی که در آن ید اکسید می گردد، یعنی ید از محلول یدیدها آزاد می گردد یدومتری گویند. روشهای زیادی بر اساس خواص کاهندگی یون یدید استوارند. ید که محصول واکنش است، معمولاً با محلول استاندارد تیوسولفات تیتر می شود.
عناصر زیادی را می توان به روش یدمتری تعیین نمود. یکی از این عناصر، مس است. در این روش از واکنش زیر جهت احیا و رسوب دادن مس استفاده می کنند.
2Cu (+2) + 4I(-1) 2 CuI (s) + I2
حال مقدار ید آزاد شده توسط محلول تیوسولفات تعیین می‌شود و از روی مقدار تیوسولفات مصرفی (با استفاده از روابط استوکیومتری) ، به مقدار واکنش دهنده ی اولیه ی مورد نظر (در اینجا یون مس) دست می یابند. واکنش ید با تیوسولفات به وسیله ی معادله ی زیر داده شده است:
2Na2S2O3 + I2 = Na2S4O6 + 2NaI
نقطه ی پایانی تیتراسیون به سادگی توسط محلول نشاسته مشخص می شود. لحظه ی مناسب برای اضافه کردن شناساگر وقتی است که رنگ محلول از قهوه ای به زرد کمرنگ تغییر می کند. پایان تیتراسیون هنگامی است که محلول بیرنگ می شو

همچنین یدومتری دقیق‌ترین و قابل اعتمادترین روش اندازه گیری اکسیژن محلول در آب می‌باشد.‌ این روش یک روش تیتراسیونی است که بر اساس خواص اکسیدکنندگی اکسیژن محلول انجام می‌گیرد. با افزایش به محلول قلیایی شده آب ، هیدروکسید منگنز با اکسیژن محلول آب ترکیب شده ، ایجاد می‌کند. با مصرف تمام اکسیژن موجود ، محلول اسیدی می‌شود. با افزودن یدید ، در محیط اسیدی با یون یدید ، وارد واکنش شده ، ید آزاد می‌کند. مقدار ید آزاد شده توسط محلول تیوسولفات تعیین می‌شود و از روی مقدار تیوسولفات مصرفی (با استفاده از شناساگر نشاسته) ، مقدار اکسیژن موجود در آب محاسبه می‌شود.


در تیتراسیونهای معمولی مانند تیتراسیون های خثی شدن، به عنوان مثال یک اسید باغلظت نامعین، به وسیله بازی با غلظت کاملا، معین تیتر می شود. نقطه ی هم ارزی، نقطه ای است که در آن کاملاً تعداد یونهای H+ با تعداد یونهای OH- هم ارز یا برابر می شود. یک شناساگر به محلول اضافه می شود که در نقطه ی pH خنثی تغییر رنگ می دهد. در این زمان افزودن حجم باز قطع می شود و از روی مقدار حجم مصرفی باز، غلظت اسید باحجم معین را می توان محاسبه نمود.
تیتراسیون های اکسایش کاهش بر اساس اکسایش یا کاهش مواد بنا شده اند. فرآیند اکسیداسیون (اکسایش)فرآیندی است که در آن یک جسم (اکسید کننده) الکترون می‌گیرد و عدد اکسایش یک اتم افزایش می‌یابد.
فرآیند احیا (کاهش)فرایندی است که در آن یک جسم (احیا کننده) الکترون از دست می‌دهد و عدد اکسایش یک اتم کاهش می‌یابد.
مثالی از واکنشهای اکسایش و کاهش
بر این اساس ، واکنش زیر یک واکنش اکسایش و کاهش می‌باشد. چون عدد اکسایش اتم S از صفر به +4 افزایش پیدا می‌کند و می‌گوییم گوگرد اکسید شده است و عدد اکسایش اتم O از صفر به -2 کاهش پیدا کرده است و می‌گوییم اکسیژن کاهیده شده است:

S + O2 → SO2

که در آن ، در طرف اول عدد اکسیداسیون هر دو ماده صفر و در طرف دوم ، عدد اکسیداسیون گوگرد در ترکیب +4 و اکسیژن ، -2 است.

اما در واکنش زیر اکسایش- کاهش انجام نمی‌شود، زیرا تغییری در عدد اکسایش هیچ یک از اتمها به وجود نیامده است:

SO2 + H2O → H2SO4

که در SO2 ، عدد اکسیداسیون S و O بترتیب ، +4 و -2 و در آب ، عدد اکسیداسیون H و O بترتیب +1 و -2 و در اسید در طرف دوم ، عدد اکسیداسیون H و S و O بترتیب ، +1 ، +4 و -2 است.
عامل اکسنده و عامل کاهنده
با توجه به چگونگی نسبت دادن اعداد اکسایش ، واضح است که نه عمل اکسایش و نه عمل کاهش بتنهایی انجام پذیر نیستند. چون یک ماده نمی‌تواند کاهیده شود مگر آن که هم‌زمان ماده ای دیگر ، اکسید گردد، ماده کاهیده شده ، سبب اکسایش است و لذا عامل اکسنده نامیده می‌شود و ماده‌ای که خود اکسید می‌شود، عامل کاهنده می‌نامیم.

بعلاوه در هر واکنش ، مجموع افزایش اعداد اکسایش برخی عناصر ، باید برابر مجموع کاهش عدد اکسایش عناصر دیگر باشد. مثلا در واکنش گوگرد و اکسیژن ، افزایش عدد اکسایش گوگرد ، 4 است. تقلیل عدد اکسایش ، 2 است، چون دو اتم در معادله شرکت دارد، کاهش کل ، 4 است.

در تیتراسیونهای اکسایش –کاهش نیز
اکثر شناساگرهای مورد استفاده در تیتراسیونهای اکسایش-کاهش خود عوامل اکسنده یا کاهنده اند که به جای حساس بودن به تغییر غلظت، نسبت به تغییر پتانسیل سیستم جواب می دهند. به این دلیل در عمل به جای تابع P مانند pH، پتانسیل الکترود سیستم را در محور yهای منحنی برای یک تیتراسیون اکسایش-کاهش رسم می کنند. این پتانسیل E از معادله ی نرنست به دست می آید.
فرم و شکل کلی منحنی تیتراسیونهای اکسایش-کاهش با تیتراسیونهای خنثی شدن تفاوتی ندارد.

اطلاعات اولیه
اعداد اکسایش را متخصصان شیمی ‌معدنی ابداع کردند. برای موازنه واکنشهای اکسایش ـ کاهش از اعداد اکسایش استفاده می‌‌شود و متخصصان شیمی‌ کوئوردیناسیون برای طبقه‌بندی دنیای غنی شیمی‌ فلزات واسطه به آنها نیاز دارند. گرچه متخصصان شیمی ‌آلی و زیست شیمی‌ علاقه کمتری به این مفهوم دارند و معمولا تنها زمانی از این اعداد استفاده می‌‌کنند که با ترکیبات فلزات واسطه کلاسیک سر و کار داشته باشند. مسئله اختصاص اعداد اکسایش در شیمی‌ آلی را که منعکس کننده ماهیت قطبی پیوند و است، نمی‌توان به آسانی پذیرفت. مثلا کربن موجود در دو مولکول و یکسان نیستند.
تاریخچه
اولین بار چالزکی یورگنسن مسئله یکسان نبودن کربن در دو مولکول متفاوت را شناخت. وی این مسئله را در قالب اعداد اکسایش و حالتهای اکسایش بیان کرد. اعداد اکسایش همواره مورد مشاجره مولفان زیادی بوده است.
مفهوم عدد اکسایش
اعداد اکسایش بارهایی (در مورد ترکیبات کووالانسی ، بارهایی فرضی) هستند که بر طبق قواعدی اختیاری به اتم‌های یک ترکیب نسبت داده می‌شوند. عدد اکسایش یونهای تک اتمی ‌، همانند بار آن یونهاست.
قوانین تعیین اعداد اکسایش
این قوانین باید ساده و روشن باشند و در صورت امکان نتایج مستدلی از نظر شیمیایی ارائه داده و ابهامی‌ نداشته باشند. این قواعد را که عموما پذیرفته شده‌اند، باید به همان ترتیبی که ارائه شده است، بکار برد. اعمال این قوانین برای تعیین اعداد اکسایش ترکیبات معدنی محکی از اظهارات فوق است.عدد اکسایش یونهای تک اتمی‌ ، همانند بار آن یونها است.

تیتراسیون های اكسایش كاهش (یدومتری)

هدف: یدومتری یک روش حجم سنجی شیمی تجزیه است که در تیتراسیون از ید به عنوان شناساگر نقطه

پایانی استفاده میشود

تئوری:

روش شیمیایی وینکلر یا یدومتری :

یدومتری دقیق‌ترین و قابل اعتمادترین روش اندازه گیری  می‌باشد.‌ این روش یک روش تیتراسیونی است

که بر اساس خواص اکسیدکنندگی اکسیژن محلول انجام می‌گیرد.

با افزایش  به محلول قلیایی شده آب ، هیدروکسید منگنز با اکسیژن محلول آب ترکیب شده ، ایجاد  می‌کند.

با مصرف تمام اکسیژن موجود ، محلول اسیدی می‌شود. با افزودن یدور ،  در محیط اسیدی با یون یدور ،

وارد واکنش شده ، ید آزاد می‌کند.

مقدار ید آزاد شده توسط محلول تیوسولفات تعیین می‌شود و از روی مقدار تیوسولفات مصرفی ، مقدار

اکسیژن موجود در آب محاسبه می‌شود.
 

عناصر زیادی را می توان به روش یدمتری تعیین نمود. یکی از این عناصر، مس است. در این روش از واکنش زیر جهت احیا و رسوب دادن مس استفاده می کنند.

 حال مقدار ید آزاد شده توسط محلول تیوسولفات تعیین می‌شود و از روی مقدار تیوسولفات مصرفی (با استفاده از روابط استوکیومتری) ، به مقدار واکنش دهنده ی اولیه ی مورد نظر (در اینجا یون مس) دست می یابند

نقطه ی پایانی تیتراسیون به سادگی توسط محلول نشاسته مشخص می شود. لحظه ی مناسب برای اضافه

کردن شناساگر وقتی است که رنگ محلول از قهوه ای به زرد کمرنگ تغییر می کند. پایان تیتراسیون

هنگامی است که محلول بیرنگ می شود.

یون یدید یک عامل کاهنده ی نسبتاً موثری است که به طور وسیعی برای تجزیه ی اکسنده ها به کار می

رود.

به طور کلی به واکنش هایی که در آن ید اکسید می گردد، یعنی ید از محلول یدیدها آزاد می گردد یدومتری

گویند. روشهای زیادی بر اساس خواص کاهندگی یون یدید استوارند. ید که محصول واکنش است، معمولاً

با محلول استاندارد تیوسولفات تیتر می شود.

عناصر زیادی را می توان به روش یدمتری تعیین نمود. یکی از این عناصر، مس است. در این روش از واکنش زیر جهت احیا و رسوب دادن مس استفاده می کنند.

این روش یک روش تیتراسیونی است که بر اساس خواص اکسیدکنندگی اکسیژن محلول انجام می‌گیرد. با افزایش به محلول قلیایی شده آب ، هیدروکسید منگنز با اکسیژن محلول آب ترکیب شده ، ایجاد می‌کند. با مصرف تمام اکسیژن موجود ، محلول اسیدی می‌شود. با افزودن یدید ، در محیط اسیدی با یون یدید ، وارد واکنش شده ، ید آزاد می‌کند. مقدار ید آزاد شده توسط محلول تیوسولفات تعیین می‌شود و از روی مقدار تیوسولفات مصرفی (با استفاده از شناساگر نشاسته) ، مقدار اکسیژن موجود در آب محاسبه می‌شود.

 روش کار :

·       مجهول را به حجم می رسانیم

·       مقدار مشخصی از آن بر می داریم ( 25 cc )

·        به آن اضافه می کنیم

·       محلول را صاف کرده و رسوب را با 5cc آب شستشو می دهیم

·       محلول را با تیوسولفات 0.1N تیتر می کنیم تا رنگ زرد کاهی نمایان شود

·       2ml چسب نشاسته 0.1% + 0.5gr KSCN را به آن اضافه می کنیم

·       تیتراسیون را تا تغییر رنگ مجدد ادامه می دهیم

+ نوشته شده در  شنبه بیستم آبان 1391ساعت 14:51  توسط محمد جواد زراعت شعار  | 

خشک کن دوار - مهندسی پلیمر

خشک کن دوار
مقدمه تئوری :
خشک­کن دوار شامل یک استوانه­ای است که در جهت مناسب می­چرخد و به طور معمول با افق زاویة کمی دارد.
طول استوانه 4 تا بیش از 10 برابر قطرش می­باشد که ممکن است از 3/0 تا 3 متر تغییر کند. مواد جامد تغذیه شده به انتهای هر سیلندر وارد می­شود و به واسطة سه خاصیت چرخشی، اختلاف ارتفاع و شیب استوانه، محصول تمام شده از قسمت دیگر تغذیه می­کنند.
خشکنهای دوار به سه گروه تقسیم می­شوند: 1) مستقیم 2) غیرمستقیم، مستقیم
3) غیرمستقیم
روش مستقیم روشی است که وقتی تبادل مستقیم حرارت بین جریان مواد جامد صورت می­گیرد موچب افزایش یا کاهش دمای جامدات می­شود و روش غیرمستقیم روشی است که گرمای ملایم جدا شده از برخورد فیزیکی مواد جامد با دیوار یا لوله فلزی باشد.
خشک­کن دوار:یکی از مهمترین خشک­کن­هایی است که برای خشک کردن مواد جامد گرانول که می­توانند جریان آزاد داشته باشند و در اثر پاشیدن و به هم خوردن عمل خرد شدن قابل ملاحظه­ای صورت نگیرد.
اگر خشک کن دوار مجهز به دستگاه مخصوصی که کیکهای جامد را می­شکنند باشند، می­توانند مواد خیلی چسبنده را هم به خوبی خشک کنند. در مورد خشک کردن مایعات غلیظ، مواد گلی شکل، مواد خیلی چسبنده و صمغی و موادی که به کندی خشک می­شوند مناسب نمی­باشند به علاوه مواد گوگردی و یا مواد سبکی که به راحتی توسط جریان هوا حمل می­شوند. خشک­کن­های دوار برای خشک­کردن کودهای شیمیایی از قبیل سولفات، فسفات، و نیترات آلونیوم و نمکهای پتاسیم، همچنین موادی مانند مواد معدنی، شن، سنگ آهک، خاک رس ....
زمان خشک شدن در این خشک کنها معمولاً بین 5 دقیقه تا 1 ساعت و ظرفیت آنها بین چند صد کیلوگرم تا چند صدتن تغییر می­کند.
ساختمان شماتیک یک خشک­کن دوار:
یک خشک­کن دوار شامل یک پوسته استوانه­ای چرخنده به صورت افقی و با کمی شیب به سمت قسمت خروجی خوراک می­باشد. خوراک مرطوب از یک انتهای استوانه وارد و از انتهای دیگر محصول خشک شده خارج می­شود، هنگامیکه استوانه می­چرخد پرده­های بالا برنده مواد جامد را بالا می­برند و به داخل هوای داغ در حال جریان می­پاشند و درنتیجه سطح مواد جامد به طور کامل در معرض هوای داغ قرار گرفته و عمل خشک شدن به طور مؤثرتری انجام میگیرد. در محل ورود خوراک چند پره مارپیچی قرار دارد که به جلو راندن خوراک کمک می­کند تا به پرده­های اصلی برسد.
در محیط­های مرطوب لازم است که هوای خنک ورودی تا حدی رطوبت زدایی شود که این کار را می­توان توسط برج جذب و درمجاورت کلسیم کلراید انجام داد. دستگاه­های فرعی این خشک کن عبارتند از: گرم کن هوا با شعله مستقیم و یا غیرمستقیم، کانال تنظیم کردن مقدار هوا، دستگاه جمع­­آوری غبارات و فن­ها، همچنین یک سیستم نوار نقاله برای انتقال ذرات ورودی و خروجی در بعضی موارد به یک سیستم اتوماتیک چکشی نیاز است تا موادی را که روی بالا برنده به صورت کیک قرار می­گیرند خرد کند.
تئوری خشک­کن­های دوار:
اگر انتقال حرارت مستقیماً از فاز گاز به فاز جامد صورت گیرد آن را از نوع حرارت مستقیم و اگر انتقال حرارت از لوله­های بخار به مواد جامد انجام گیرد آنرا از نوع حرارت غیرمستقیم گویند. در صورتی که جهت جریان فاز گاز و فاز جامد هم جهت لاشند آنرا فواری واگر مخالف جهت هم باشند آنرامتقابل گویند. براین اساس خشک­کن­های دوار به چهار گروه زیر تقسیم می­شوند.
حرارت مستقیم، جریان متقابل:
برای موادی که باید تا دمای بالاتر گرم شوند مانند مواد معدنی، شن، سنگ آهک، خاک رس و غیره از جریان مستقیم گاز داغ استفاده می­شود. برای موادی که نباید تا دمای خیلی بالاتری گرم شوند مانند سولفات آلومینوم و شکر و محصولات کریستالی مواد شیمیایی، از هوای گرم استفاده می­شود.
2) حرارت مستقیم، جریان فواری:
مواد جامدی که از آلوده شدن آن با گاز احتراق نگران نیستیم ولی باید تا دمای بالا گرم نشوند مانند سولفید آهن، سنگ گچ و مواد آلی مانند ذغال سنگ احیا نشده و مواد کشاورزی، باید در خشک­کن موازی خنک شوند.
3)حرارت غیرمستقیم، جریان متقابل:
موادی نظیر پیگمانهای سفید که باید تا درجه حرارت بالا گرم شوند ولی در تماس با گاز نیابد باشند. ممکن است ساختمان خشک­کن انتخاب شده از آجر نسوز ساخته شده باشد و به وسیله بخار داغ کاملاً احاطه شده باشد. در این حالت دبی جریان هوا را در مینیمم مقدار خود نگه می­داریم زیرا در این حالت حرارت بوسیلة هدایت از پوسته و یا لوله­های مرکزی اعمل می­شود.
4) نوع مستقیم – غیرمستقیم:
این خشک­کن اقتصادی تر از خشک­کن مستقیم می­باشد و ممکن است برای موادی که در درجه حرارت بالا خشک می­شوند با استفاده از لوله بخار بکار گرفته شوند. به عنوان مثال هوای داغ با درجه حرارت 1200 تا of 1400 آنرا ترک کرده و وارد فضای حلقه مانند شده و در تماس با ماده جامد قرار می­گیرد . در دمای 140 تاfo170 آنرا ترک می­کنند. زغال سنگ خام کلاً به این روش خشک می­شوند بدون آنکه مشتعل شوند و یا گرد و غبار آنها محترق شوند. قطر تقریبی این خشک کن تنها از 3 الی 10 (فوت) و طول آنها از 2 الی 100 فوت تغییر می­کند.
خشک­کن دوار مستقیم:این نوع خشک کن معمولاً شامل یک استوانه فلزی ساده بود و برای درجه حرارتهای پایین و یا متوسط مناسب می­باشد. برای درجه حرارتهای عملیاتی که در حد پایین می­باشد از فلزات با خواص مناسب آن را ساخته­اند.
خشک­کن لوله بخار غیرمستقیم:این نوع خشک­کن شامل یک استوانه ساده است که مجهز به یک، دو و یا سه ردیف لوله می­باشد ودر هنگام عملیات حاوی سیال حرارتی است و در داخل استوانه به صورت طولی نصب شده­اند. این نوع برای خشک­کن­هایی که دارای درجه حرارت بخار (سیال حرارتی) هستند مناسب می­باشد و برای خشک­ کردن موادی که به آلودگی حساس هستند و نباید در تماس با گاز احتراق باشند کاربرد دارد.
خشک­کن کرکرده­ای:در این خشک­کن گاز در داخل بسته سیر لوله می­شود و مانند خشک­کن­های دوار مستقیم برای درجه حرارتهای پایین و متوسط مناسب است.
خشک­کن مستقیم کرکره­ای:هوای داغ (یا هوای سرد) ازمیان کرکره­ها به داخل استوانه دوار دو جداره دویده می­شوند و از لای کرکره­ها عبور کرده و به داخل بستر مواد جامد دمیده می­شود و در این حال استوانه یا شل می­چرخد وجود پره­های کرکره­ای مانند باعث می­شود که هوای داغ به صورت یکنواخت به بستر مواد جامد رسیده و عمل انتقال حرارت و جرم بهتر صورت گیرد.
خشک­کن دوار غیرمستقیم لوله بخار:لوله­های بخار گرم کننده به صورت قرینه­وار و متحدالمرکز در یک دو و یا سه ردیف نصب شده­اند و همراه استوانه خشک کن می­چرخند این لوله­های بخارممکن است از نوع لولة ساده باشند که بخار در طول آن ضمن حرارت دادن کندانس شده و این آب کندانس شده از طریق تله بخار دفع می­شود.
(تله بخار دارای این خاصیت هست که مایع را اجازه می­دهد که از آن عبور کرده و خارج شود ولی از خارج شدن فاز گازی ممانعت می­کند.) هوایی که از خشک­کن خارج می­شود خارج می­شود تقریباً نزدیک به اشباع است زیرا مقدار هوایی که در این خشک­کن لازم است، معمولاً خیلی کمتر از مقدار هوای مصرفی در خشک­کن­های نوع مستقیم است.
بخار داغ وارد لوله­ها شده و پس از کندانس شدن از آن خارج می­شود. جسم خشک شده از درون روزنه­هایی که در شل قرار دارند خارج می­شود. این روزنه­ها دارای دیواره­هایی هستند که باعث می­شود عمق بستر در داخل شل همیشه به اندازه کافی باقی بماند. این خشک­کن­ها به ویژه برای خشک کردن موادی مناسب است که زمان خشک کردن با شدت نزولی انها طولانی بوده و بتوان آنها را در زمانی نسبتاً طولانی در یک دمای ثابت نگه داشت. دوران شل در ضمن اینکه موجب هم زدن مواد بستر شده و از ایجاد کیک جلوگیری می­کند، باعث سهولت جریان بخار آب نیز خواهند شد و به دلیل اتلاف حرارتی پایین جریان هوای خروجی، راندمان بالاست این خشک­کن برای موادی که نسبت به حرارت حساس هستند مناسب است. زیرا که درجه حرارت ماکزیمم دقیقاً قابل کنترل می­باشد و این دما توسط دمای عامل گرم کننده (بخار) کنترل می­شود.
در این نوع خشک­کن­ها معمولاً خوراک مرطوب از طریق انتقال دهنده مارپیچی و یا ریزشی به داخل خشک­کن وارد می­شود و در خشک­کن­های معمولی، محصول خشک شده در انتهای استوانه از لابه لای لوله های بخار به بیرون ریخته می­شود. بااین کار همچنین هوای استفاده شده جهت خشک کردن و دیگر گازهای موجود ازداخل خشک­کن خارج می­شود. به دلایل زیاد جهت جریان کاز و مواد جامد متقابل می­باشد.
محاسبه قطر خشک­کن
بادرنظر گرفتن روش چگونگی عملیات و میزان رطوبت قابل قبول برای محصول و دمای هوای خروجی مقدار هوای لازم و دمای ورودی آن موازنه جرم و حرارت مشخص می­شود. سرعت هوا نبایستی خیلی زیاد باشد، زیرا در این صورت مواد جامد بیش از اندازه منتقل می­شوند. برای مواد زبر و درشت (Coarse) تجربیات عملی مشخص کرده سرعت متوسطی برابر 5/2 برای هوای خروجی لازم است. برای مواد زیر (پودری) سرعت خیلی کمتری لازم ایت. یک روش تجربی برای محاسبه سرعت هوا، برابر گرفتن آن با نصف سرعت حد سقوط آزاد کوچکترین ذرات موجود در محصول است. سطح مقطع و قطر خشک­کن را با این فرض که سطح مؤثر برای جریان هوا 85% سطح کل است می­توان محاسبه نمود.
محاسبه طول خشک­کن :
اگر زمان خشک شدن را به طریقی بتوان تعیین نمود (در یک واحد خشک­کن موجود و یا در آزمایشگاه در تحت شرایطی که در خشک اصلی موجود است) این زمان برای طراحی مکانیکی خشک­کنی که در زمان اقامت مواد درآن، مقدار کمی از زمان خشک شدن بیشتر باشد مورد استفاده قرار می­گیرد. رابطه­ای که می­توان از آن استفاده نمود قبلاً ذکر شده است. مسئله مهم در ایفا یکسان بودن شرایط در خشک­کن آزمایشگاهی و خشک­کن اصلی است و این بدان معنی است که زمان خشک شدن می­بایستی از روی یک خشک­کن مقیاس صنعتی و با یک طرح بزرگ نیمه صنعتی تعیین شده باشد.
محاسبه طول خشک­کن مسئله ای است که تواماً با انتقال جرم و انتقال حرارت مربوط
می­شود. روش محاسبه بعداً می­آوریم. کل تغییرات مقدار زپرطوبت خوراک در خشک­کن به تعداد مناسبی تقسیم می­شود. این تقسیمها شامل مراحل پیش گرم نمودن خوراک (که خوراک را به دمای حباب مربوط می­رساند) و مرحله خشک شدن با شدت ثابت و بقیه تقسیمات (6 تا 10 قسمت) مربوط به مرحله خشک شدن با شدت نزولی می­شود. اگر محاسبات با استفاده از کامپیوتر انجام شود می­توان تعداد تقسیمات را زیاد نمود و دقت محاسبات را افزایش نمود. طراح یک خشک­کن باید هر طراحی را با یک مسئله مجزا و منفرد بداند، طرحهای دیگران تنها می­تواند، راهنمایی برای طراحی او باشد.
دمای خوراک و دمای هوا و دمای حباب مرطوب معلوم است انگاه طول قسمت پیش گرم نمودن خوراک و رساندن خوراک به دمای حباب و قسمت خشک شدن با شدت ثابت با استفاده از ضرائب انتقال حرارت محاسبه می­شود (فرض می­شود که در قسمت پیش گرم نمودن خوراک، خشک شدن صورت نمی­گیرد) برای محاسیه طول قسمتی از خشک­کن که درآن خشک شدن با شدت نزولی صورت می­گیرد، ضریب انتقال جرم درواحد طول، بر حسب تابع از مقدار رطوبت لازم است. ضریب انتقال حرارت درسرتاسر خشک­کن را می­توانیم ثابت فرض کنیم. شاید بهتر باشد نخست زمان خشک شدن تخمین زده شود و آنگاه طول خشک کن برای تامین زمان فوق محاسبه شود. این روش محاسبه اساساً مشابه روش قبل است با این تفاوت که مراحل محاسباتی آن متفاوت است.

 

دمای ورودی
دمای خروجی
زمان ورود خوراك
66.6
48.3
بعد از 5 دقیقه
76.82
57.1
بعد از 10 دقیقه
65.52
53.82
بعد از 15 دقیقه
70
55.4
بعد از 20 دقیقه
79.4
58.6

« طراحی خشك کن دوار»
برای طراحی یک خشک­گن دوار باید موارد زیر را محاسبه کرد:
1) طول و قطر خشک­کن 2) شیب خشک­کن
3) مقدار هوای لازم برای عمل خشک­کردن 4) مقدار حرارت لازم
5) جهت جریان 6) تعداد دور استوانه در واحد زمان
برای بدست آوردن بالا بایستی یک سری معلومات داشته باشیم که عبارتنداز:
1) رطوبت و دمای هوای موجود
2) رطوبت و دمای هوای خروجی از گرمکن
3) رطوبت و دمای هوای خروجی از خشک­کن
4) رطوبت ماده ورودی
5) مقدار محصول در واحد زمان
6) میزان رطوبت محصول


« محاسبات»
داده­های مسئله:
=وزن سویا200 gr
Set point S2

قطر
وزن سویای مرطوب=255
وزن سویای خشک=200
دمای ورودی
دمای خروجی
سرعت

=جرم200gr=0.2 kg=0.44 Ib


فهرست منابع:
1- تریبال رابرت . ترجمه دکتر طاهره کاغذ چی و دکتر مرتضی سهرابی . چاپ پنجم بهمن 1380 انتقال جرم ، نشر مرکز نشر دانشگاهی صنعتی امیرکبیر ( پلی تکنیک تهران )
2- وارن ال . مک کیب . جولیان سی . اسمیت . پیتر هریوت
ترجمه علی اصغر حمیدی ، داود رشتچیان ، محمد مهدی منتظر رحمتی ، چاپ اول 1380 عملیات واحد مهندسی شیمی ، نشر مرکز نشر دانشگاهی
3- ماکس . اس . پیترز . کلاوس دی . تیمرهاوس . ترجمه مجتبی سمنانی رهبر ، ساناز پورمند ، چاپ اول 1380 طراحی کارخانه و تحلیل مباحث اقتصادی برای مهندسین شیمی ، نشر دانشگاه امام حسین (ع)
4- دکتر مرتضی خسروی . سهیلا صداقت . چاپ اول زمستان 76، شیمی نشر دانشگاه امام حسین


+ نوشته شده در  دوشنبه یازدهم اردیبهشت 1391ساعت 15:13  توسط محمد جواد زراعت شعار  | 

استخراج مایع مایع - مهندسی پلیمر

استخراج مایع مایع

چکیده :
برایانجام استخراج محلول را در قیف جدا کننده میریزند (توجه کنید شیر بستهباشد) و به آن مقداری حلال استخراجی اضافه میکنند (قیف نباید بیش از سهچهارم پر شود). دهانه بالای قیف جدا کننده را با در لاستیکی یا سنباده ایکه اکثر قیفها دارا هستند میبندند. هنگام تکان دادن قیف آنرا به نحو بهخصوصی نگاه میدارند.
قیفو محتویات آنرا به شدت تکان میدهند تا دو مایع غیر قابل اختلاط تا حد ممکنبا هم تماس
پیدا کنند. منظور از این تکان آن است که سطح تماس دو حلالافزایش بیشتری یابد تا جسم در
زمان نسبتا کمتری در بین آنها پخش شود و بهحالت تعادل برسد. باید هر چند ثانیه قیف را
برگرداند (شیر به طرف بالا) وبا احتیاط شیر آنرا باز کرد تا گاز قیف خارج شود و فشاری که
در آن ایجادشده از بین برود. این عمل مخصوصا وقتی حلالی با نقطه جوش کم به کار میرودو
یا یک محلول اسیدی با سدیم بی کربنات استخراج میشود (گازCO2آزاد میشود) اهمیت پیدا
میکند. در صورتی که این کار انجام نشود ممکن استدر قیف و محتویات آن به شدت به بیرون
بپرد. پس از تکان دادن کافی (حدود 2دقیقه تکان شدید) برای آخرین بار گاز قیف را خارج
میکنند و آنرا در رویحلقه ای قرار میدهند و میگذارند تا لایه ها از هم جدا شوند. پس از آن
لایهپایینی را به دقت از راه شیر به داخل ظرفی ریخته و دو لایه مایع را از همجدا میکنند.
قاعدتالایه ها طوری جدا میشوند که حلال سنگینتر در قسمت پایین قرار میگیرد. بنابراین،
آگاهی از دانسیته حلالهای مصرفی برای تشخیص لایه ها مفید است. با وجود این، این تشخیص
بدون خطا نیست زیرا ممکن است ماهیت و غلظت جسم حلشده طوری باشد که دانسیته نسبی
دو حلال را معکوس کند .
گزارش كار روش های پیوسته و نا پیوسته در استخراج مایع – مایع:
استخراجروشی است برای جداسازی که مستلزم انتقال جسمی از یک فاز به فاز دیگرمیباشد.
در بعضی مواقع لازم است برای بازیابی یک جسم آلی از محلول آبی ازراههایی غیر از تقطیر
استفاده شود. یکی از این راهها تماس دادن محلول آبیبا یک حلال غیر قابل امتزاج با آب است.
اگر حلال خاصیت جداسازی را داشتهباشد بیشتر مواد آلی از لایه آبی به حلال آلی (حلال غیر
قابل امتزاج باآب) انتقال پیدا میکند. روش استخراج مایع – مایع در جدا کردن ترکیبهای آلیاز
مخلوط مصرف بسیار زیادی دارد. یکی از خواص حلال که برای استخراج به کاربرده میشود
این است که قابلیت حل شدن آن در آب و یا هرماده دیگری که جسمآلی را در خود حل کرده کم
باشد و یا بهتر از آن اینکه اصلا حل نشود. همچنین باید فرار باشد تا براحتی بتوان آنرا از
ترکیب یا ترکیبات آلیاستخراج شده، تقطیر نمود. با توجه به مطالب فوق جسم استخراج شونده
باید درحلال استخراج کننده به خوبی حل شود و قابلیت انحلال در این حلال خیلیبیشتر از آب
باشد. ضمنا حلال استخراج کننده هیچ نوع واکنشی با آب یا موادقابل استخراج نباید بدهد.
مهمترین حلالی که در استخراج به کار گرفته میشوددی اتیل اتر است که توانائی حل کردن
تعداد زیادی از ترکیبات را در خوددارد. دی اتیل اتر نسبت به اکثر ترکیبات بی اثر بوده و به
راحتی به وسیلهیک تقطیر ساده از مخلوط بازیابی میشود. اما اشکال مهم آن این است که
آتشگیر بوده و خیلی زود در هوا محترق میشود.
از نظر کمی پخش یک جسم بین دو حلال غیر قابل امتزاج را بر حسب ضریب پخش (ضریب
تفکیک)Kبیان میکنند.
غلظتAدر حلالS'/ غلظتAدر حلالS= K
بدیهی است برای این کهAدر یکی از دو مایع غیر قابل اختلاط کاملا حل شود، باید مقدار
Kبینهایت یا صفر باشد. عملا هیچ یک از این دومقدار به دست نمی آیدبا این حال تا زمانی که
مقدارKبزرگتر از 1 و حجم حلالSبرابر یا بزرگتر از حلالS'باشد مقدارجسم در حلال
Sبیشتر خواهد بود.
یکی دیگر از نتایج قانون پخش (معادله بالا) این است که چنانچه برای جدا کردن جسم از محلول
آن درS'باید جمعا حجم معینی از حلالSبه کار رود، میتوان نشان داد که انجام چند استخراج
متوالی با قسمتهایی ازآن حجم بهتر از یک استخراج با تمام آن حجم است. مثلا در استخراج
محلول آبیبوتیریک اسید، مقدار اسیدی که به کمک دو استخراج متوالی با قسمتهای 50میلی
لیتری اتر به دست می آید، بیشتر ازاسیدیاست که به کمک یک استخراجبا 100 میلی لیتر اتر
خارج میشود. با این حال سه استخراج متوالی باقسمتهای 33 میلی لیتری بهتر خواهد بود. با این
حال حدی وجود دارد که بعداز آن دیگر استخراج اضافی بازده قابل ملاحظه ای نداد. ضمنا
واضح است هرچهضریب پخش بزرگتر باشد تعداد استخراج مکرری که برای جدا کردن کامل
جسم لازماست کمتر میشود
هنگامانتخاب حلال جهت استخراج یک جزء از محلول باید چند اصل کلی را به خاطرسپرد.
(1)حلال استخراج با حلال محلول اصلی باید غیر قابل اختلاط باشند.
(2)حلال انتخابی باید برای جزء مورد نظر مناسبترین ضریب پخش و برایناخالصیها یا اجزای دیگر ضرایب نامناسبی داشته باشد.
(3) حلال انتخابیباید مانند تبلور مجدد از نظر شیمیایی با اجزای مخلوط، واکنش نامناسبیندهد
(4)پس از استخراج باید بتوان حلال را به آسانی از جسم حل شده جداکرد. معمولا حلال را با تقطیر جدا میکنن.
هنگامی که یکی از حلالها آب باشد، ضرایب پخش اسیدها و بازهای آلی به مقدار زیادی تحت تاثیر pH قرار میگیرد. اسید آلی که در pH برابر با ۷ در آب نامحلول باشد ممکن است در محلول آبی رقیق سدیم هیدروکسید یا سدیم بی کربنات کاملا حل شود. در چنین حالی خروج پروتون از اسید، باز مزدوج مربوط را ایجاد میکند و این باز به علت خاصیت یونی خود در آب که حلالی قطبی است بیشتر حل میشود.


به همین روش باز آلی که در pH برابر با ۷ در آب نامحلول باشد، ممکن است در محیط اسیدی (pH کمتر از 7) مانند کلریدریک اسید کاملا حل شود. در این حالت افزایش حلالیت به علت پروتوندار شدن باز آلی به وسیله اسید آبی و ایجاد اسید مزدوج قطبی است که در آب بیشتر محلول است.
بنابر این اسیدها و بازهای آلی را میتوان به طور انتخابی از حلالهای آلی غیر قطبی مانند اتر، دی کلرومتان، بنزن و غیره به کمک استخراج با محلول آبی که pH مناسبی داشته باشد جدا کرد. با خنثی کردن محلول آبی میتوان اسید یا باز آلی اولیه را دوباره از آن به دست آورد. افزایش باز آبی به محلول اسیدی باعث ازاد شدن باز آلی میشود، در حالی که افزایش اسید آبی به محلول بازی، اسید آلی را آزاد میکند.

گزارش تجربی جداسازی اسید استیک %10 از آب توسط حلال AW (استخراج مایع - مایع) :
هدف : جداسازی اسید استیک از محلول %10 اسید استیک و %90 آب
وسایل لازم : قیف دکانتور – بورت – سود1/0 نرمال – فنول فتالیئن – اسید استیک %10
ارلن – استوانه مدرج cc10- بشر – حلال AW
شرح آزمایش : ابتدا یک یشر بر می داریم ٬ آن را شسته و توسط اسید استیک %10 هموژن
می کنیم . سپس مقدار cc 100 اسید استیک %10 را توسط بشر جدا می کنیم و آن را درون
قیف دکانتور می ریزیم . سپس مقدار cc 100 از حلال AW را نیز توسط بشر جدا کرده به
درون قیف دکانتور حاوی اسید استیک %10 می افزاییم حال در قیف دکانتور را بسته و آن را
به مدت 20 دقیقه تکان می دهیم تا هر دو فاز مایع کاملا در هم مخلوط شوند سپس قیف دکانتور
را برروی پایه ثابت نگه می داریم . در آن را باز کرده منتظر می شویم تا دو فاز اسید استیک
%10 و حلال AW از یکدیگر جدا شوند ٬ حال شیر قیف دکانتور را باز می کنیم تا اینکه فاز
اسید استیک %10 که پایین قرار گرفته به طور کامل از قیف دکانتور خارج شده درون بشر می
ریزیم . سپس استوانه مدرج cc 10 برداشته زیر شیر قیف دکانتور قرار می دهیم اکنون شیر
دکانتور را باز کرده و مقدار cc10 از محلول AW را که در اثر اختلاطی که به جهت تکان
دادن قیف دکانتور با اسید استیک %10 مقداری از این اسید به صورت خالص و بدون آب در
آن حل شده را جدا می کنیم . حال برای تشخیص میزان اسید استیک استخراج شده توسط حلال
AW آن را توسط سود 1/0 نرمال تیتر می کنیم . که عمل تیتراسیون این محلول به شرح زیر
می باشد :
ابتدا ارلن حاوی cc10 حلال AW را برداشته مقدار 2 تا 3 قطره از معرف فنول فتالیئن اضافه
می کنیم . حال ارلن را در زیر بورت حاوی سود 1/0 نرمال قرار داده شیر بورت را باز
می کنیم به نحوی که سود به صورت قطره قطره وارد ارلن شود . برای انجام درست عمل
تیتراسیون هم زمان با ورود قطرات سود به درون ارلن ٬ خود ارلن را تکان می دهیم این عمل
تا آنجا ادامه پیدا می کند تا اینکه محلول درون ارلن به رنگ ثابت صورتی بسیار روشن تبدیل
شود . پس از پایان عمل تیتراسیون حجم سود 1/ 0 نرمال مصرف شده را از روی بورت
خوانده یادداشت می کنیم .
سپس محلول اسید استیک %10 را که توسط بشر از قیف دکانتوردر مرحله اول جدا کرده بودیم
را دوباره به قیف دکانتور که اکنون حاوی cc90 از حلال AW است باز می گردانیم . حال در
قیف دکانتور را مجددا بسته و تمامی مراحل ذکر شده را برای بار دوم و بار سوم تکرارمی کنیم
با توجه به اینکه در هر مرحله cc10 از حلال AW موجود در قیف دکانتور کاسته می شود
ولی ما آزمایش را بدون اضافه کردن مقدارکاسته شده ازحلال AW به قیف دکانتور پی میگیریم
در نهایت با توجه به روابط ومحاسبات که در زیرذکرشده سه حجم متفاوت از سود 1/0 نرمال
مصرفی درهرمرحله را محاسبه ویادداشت می کنیم .درنهایت نمودارحجم اسیداستیک استخراجی
بر حسب زمان را با توجه به روابط زیر رسم می کنیم .
V1 = 5.1cc t1 = 20min بورت


V2 =5.6 t2=40minبورت


V3 =5.9 t3 = 60minبورت


N1V1 = N2V2


N2V2اسید


N1V1سود


0.1 × V2 (V2 = 5.1)


0.1 × 5.1


0.1 × V2 (V2 = 5.6)


0.1 ×5.6


0.1 × V2 (V2 = 5.9)


0.1 × 5.9

سوال: آیا حلال AW زیر آب و اسید استیك قرار دارد یا بالای آن؟
با توجه به مطالب گفته شده در قسمت گزارش به علت سبك تر بودن حلال به كار رفته در
آزمایش آب واسید استیك زیر حلال AW قرار می گیرد.
نتایج :
با توجه به محاسبات انجام شده و حجم سود مصرف شده در هر نوبت آزمایش به این نتیجه
می رسیم که در هر بار همزدن قیف دکانتور حاوی حلال و اسید استیک %10 ٬ میزان
بیشتری از اسید استیک در حلال حل شده در نتیجه میزان سود مورد نیاز برای خنثی سازی
اسید استیک موجود در حلال نیز افزایش یافته است .
نمودار فوق که بر اساس حجم های بدست آمده در آزمایش رسم شده است ٬ همان طور که
مشاهده میشود دارای شکستگی می باشد در حالی که درحقیقت این تغییرات به صورت یک
نمودار خطی می باشد . که این شکستگی بخاطر خطای موجود در آزمایش می باشد که می
تواند بر اثر فرسودگی دستگاه ها و یا خطای آزمایشگر باشد .


فهرست منابع:
1- تریبال رابرت . ترجمه دکتر طاهره کاغذ چی و دکتر مرتضی سهرابی . چاپ پنجم بهمن 1380 انتقال جرم ، نشر مرکز نشر دانشگاهی صنعتی امیرکبیر ( پلی تکنیک تهران )
2- وارن ال . مک کیب . جولیان سی . اسمیت . پیتر هریوت
ترجمه علی اصغر حمیدی ، داود رشتچیان ، محمد مهدی منتظر رحمتی ، چاپ اول 1380 عملیات واحد مهندسی شیمی ، نشر مرکز نشر دانشگاهی
3- ماکس . اس . پیترز . کلاوس دی . تیمرهاوس . ترجمه مجتبی سمنانی رهبر ، ساناز پورمند ، چاپ اول 1380 طراحی کارخانه و تحلیل مباحث اقتصادی برای مهندسین شیمی ، نشر دانشگاه امام حسین (ع)
4- دکتر مرتضی خسروی . سهیلا صداقت . چاپ اول زمستان 76، شیمی نشر دانشگاه امام حسین



----------------------

---------------------------------------

----------------------------------------------------------

استخراج مایع مایع

چکیده :
برایانجام استخراج محلول را در قیف جدا کننده میریزند (توجه کنید شیر بستهباشد) و به آن مقداری حلال استخراجی اضافه میکنند (قیف نباید بیش از سهچهارم پر شود). دهانه بالای قیف جدا کننده را با در لاستیکی یا سنباده ایکه اکثر قیفها دارا هستند میبندند. هنگام تکان دادن قیف آنرا به نحو بهخصوصی نگاه میدارند.
قیفو محتویات آنرا به شدت تکان میدهند تا دو مایع غیر قابل اختلاط تا حد ممکنبا هم تماس
پیدا کنند. منظور از این تکان آن است که سطح تماس دو حلالافزایش بیشتری یابد تا جسم در
زمان نسبتا کمتری در بین آنها پخش شود و بهحالت تعادل برسد. باید هر چند ثانیه قیف را
برگرداند (شیر به طرف بالا) وبا احتیاط شیر آنرا باز کرد تا گاز قیف خارج شود و فشاری که
در آن ایجادشده از بین برود. این عمل مخصوصا وقتی حلالی با نقطه جوش کم به کار میرودو
یا یک محلول اسیدی با سدیم بی کربنات استخراج میشود (گازCO2آزاد میشود) اهمیت پیدا
میکند. در صورتی که این کار انجام نشود ممکن استدر قیف و محتویات آن به شدت به بیرون
بپرد. پس از تکان دادن کافی (حدود 2دقیقه تکان شدید) برای آخرین بار گاز قیف را خارج
میکنند و آنرا در رویحلقه ای قرار میدهند و میگذارند تا لایه ها از هم جدا شوند. پس از آن
لایهپایینی را به دقت از راه شیر به داخل ظرفی ریخته و دو لایه مایع را از همجدا میکنند.
قاعدتالایه ها طوری جدا میشوند که حلال سنگینتر در قسمت پایین قرار میگیرد. بنابراین،
آگاهی از دانسیته حلالهای مصرفی برای تشخیص لایه ها مفید است. با وجود این، این تشخیص
بدون خطا نیست زیرا ممکن است ماهیت و غلظت جسم حلشده طوری باشد که دانسیته نسبی
دو حلال را معکوس کند .
گزارش كار روش های پیوسته و نا پیوسته در استخراج مایع – مایع:
استخراجروشی است برای جداسازی که مستلزم انتقال جسمی از یک فاز به فاز دیگرمیباشد.
در بعضی مواقع لازم است برای بازیابی یک جسم آلی از محلول آبی ازراههایی غیر از تقطیر
استفاده شود. یکی از این راهها تماس دادن محلول آبیبا یک حلال غیر قابل امتزاج با آب است.
اگر حلال خاصیت جداسازی را داشتهباشد بیشتر مواد آلی از لایه آبی به حلال آلی (حلال غیر
قابل امتزاج باآب) انتقال پیدا میکند. روش استخراج مایع – مایع در جدا کردن ترکیبهای آلیاز
مخلوط مصرف بسیار زیادی دارد. یکی از خواص حلال که برای استخراج به کاربرده میشود
این است که قابلیت حل شدن آن در آب و یا هرماده دیگری که جسمآلی را در خود حل کرده کم
باشد و یا بهتر از آن اینکه اصلا حل نشود. همچنین باید فرار باشد تا براحتی بتوان آنرا از
ترکیب یا ترکیبات آلیاستخراج شده، تقطیر نمود. با توجه به مطالب فوق جسم استخراج شونده
باید درحلال استخراج کننده به خوبی حل شود و قابلیت انحلال در این حلال خیلیبیشتر از آب
باشد. ضمنا حلال استخراج کننده هیچ نوع واکنشی با آب یا موادقابل استخراج نباید بدهد.
مهمترین حلالی که در استخراج به کار گرفته میشوددی اتیل اتر است که توانائی حل کردن
تعداد زیادی از ترکیبات را در خوددارد. دی اتیل اتر نسبت به اکثر ترکیبات بی اثر بوده و به
راحتی به وسیلهیک تقطیر ساده از مخلوط بازیابی میشود. اما اشکال مهم آن این است که
آتشگیر بوده و خیلی زود در هوا محترق میشود.
از نظر کمی پخش یک جسم بین دو حلال غیر قابل امتزاج را بر حسب ضریب پخش (ضریب
تفکیک)Kبیان میکنند.
غلظتAدر حلالS'/ غلظتAدر حلالS= K
بدیهی است برای این کهAدر یکی از دو مایع غیر قابل اختلاط کاملا حل شود، باید مقدار
Kبینهایت یا صفر باشد. عملا هیچ یک از این دومقدار به دست نمی آیدبا این حال تا زمانی که
مقدارKبزرگتر از 1 و حجم حلالSبرابر یا بزرگتر از حلالS'باشد مقدارجسم در حلال
Sبیشتر خواهد بود.
یکی دیگر از نتایج قانون پخش (معادله بالا) این است که چنانچه برای جدا کردن جسم از محلول
آن درS'باید جمعا حجم معینی از حلالSبه کار رود، میتوان نشان داد که انجام چند استخراج
متوالی با قسمتهایی ازآن حجم بهتر از یک استخراج با تمام آن حجم است. مثلا در استخراج
محلول آبیبوتیریک اسید، مقدار اسیدی که به کمک دو استخراج متوالی با قسمتهای 50میلی
لیتری اتر به دست می آید، بیشتر ازاسیدیاست که به کمک یک استخراجبا 100 میلی لیتر اتر
خارج میشود. با این حال سه استخراج متوالی باقسمتهای 33 میلی لیتری بهتر خواهد بود. با این
حال حدی وجود دارد که بعداز آن دیگر استخراج اضافی بازده قابل ملاحظه ای نداد. ضمنا
واضح است هرچهضریب پخش بزرگتر باشد تعداد استخراج مکرری که برای جدا کردن کامل
جسم لازماست کمتر میشود
هنگامانتخاب حلال جهت استخراج یک جزء از محلول باید چند اصل کلی را به خاطرسپرد.
(1)حلال استخراج با حلال محلول اصلی باید غیر قابل اختلاط باشند.
(2)حلال انتخابی باید برای جزء مورد نظر مناسبترین ضریب پخش و برایناخالصیها یا اجزای دیگر ضرایب نامناسبی داشته باشد.
(3) حلال انتخابیباید مانند تبلور مجدد از نظر شیمیایی با اجزای مخلوط، واکنش نامناسبیندهد
(4)پس از استخراج باید بتوان حلال را به آسانی از جسم حل شده جداکرد. معمولا حلال را با تقطیر جدا میکنن.
هنگامی که یکی از حلالها آب باشد، ضرایب پخش اسیدها و بازهای آلی به مقدار زیادی تحت تاثیر pH قرار میگیرد. اسید آلی که در pH برابر با ۷ در آب نامحلول باشد ممکن است در محلول آبی رقیق سدیم هیدروکسید یا سدیم بی کربنات کاملا حل شود. در چنین حالی خروج پروتون از اسید، باز مزدوج مربوط را ایجاد میکند و این باز به علت خاصیت یونی خود در آب که حلالی قطبی است بیشتر حل میشود.

به همین روش باز آلی که در pH برابر با ۷ در آب نامحلول باشد، ممکن است در محیط اسیدی (pH کمتر از 7) مانند کلریدریک اسید کاملا حل شود. در این حالت افزایش حلالیت به علت پروتوندار شدن باز آلی به وسیله اسید آبی و ایجاد اسید مزدوج قطبی است که در آب بیشتر محلول است.
بنابر این اسیدها و بازهای آلی را میتوان به طور انتخابی از حلالهای آلی غیر قطبی مانند اتر، دی کلرومتان، بنزن و غیره به کمک استخراج با محلول آبی که pH مناسبی داشته باشد جدا کرد. با خنثی کردن محلول آبی میتوان اسید یا باز آلی اولیه را دوباره از آن به دست آورد. افزایش باز آبی به محلول اسیدی باعث ازاد شدن باز آلی میشود، در حالی که افزایش اسید آبی به محلول بازی، اسید آلی را آزاد میکند.


فهرست منابع:
1- تریبال رابرت . ترجمه دکتر طاهره کاغذ چی و دکتر مرتضی سهرابی . چاپ پنجم بهمن 1380 انتقال جرم ، نشر مرکز نشر دانشگاهی صنعتی امیرکبیر ( پلی تکنیک تهران )
2- وارن ال . مک کیب . جولیان سی . اسمیت . پیتر هریوت
ترجمه علی اصغر حمیدی ، داود رشتچیان ، محمد مهدی منتظر رحمتی ، چاپ اول 1380 عملیات واحد مهندسی شیمی ، نشر مرکز نشر دانشگاهی
3- ماکس . اس . پیترز . کلاوس دی . تیمرهاوس . ترجمه مجتبی سمنانی رهبر ، ساناز پورمند ، چاپ اول 1380 طراحی کارخانه و تحلیل مباحث اقتصادی برای مهندسین شیمی ، نشر دانشگاه امام حسین (ع)
4- دکتر مرتضی خسروی . سهیلا صداقت . چاپ اول زمستان 76، شیمی نشر دانشگاه امام حسین

+ نوشته شده در  دوشنبه یازدهم اردیبهشت 1391ساعت 15:11  توسط محمد جواد زراعت شعار  | 

استخراج مایع مایع - مهندسی پلیمر

استخراج مایع مایع
گزارش تجربی جداسازی اسید استیک %10 از آب توسط حلال AW (استخراج مایع - مایع) :
هدف : جداسازی اسید استیک از محلول %10 اسید استیک و %90 آب
وسایل لازم : قیف دکانتور – بورت – سود1/0 نرمال – فنول فتالیئن – اسید استیک %10
ارلن – استوانه مدرج cc10- بشر – حلال AW
شرح آزمایش : ابتدا یک یشر بر می داریم ٬ آن را شسته و توسط اسید استیک %10 هموژن
می کنیم . سپس مقدار cc 100 اسید استیک %10 را توسط بشر جدا می کنیم و آن را درون
قیف دکانتور می ریزیم . سپس مقدار cc 100 از حلال AW را نیز توسط بشر جدا کرده به
درون قیف دکانتور حاوی اسید استیک %10 می افزاییم حال در قیف دکانتور را بسته و آن را
به مدت 20 دقیقه تکان می دهیم تا هر دو فاز مایع کاملا در هم مخلوط شوند سپس قیف دکانتور
را برروی پایه ثابت نگه می داریم . در آن را باز کرده منتظر می شویم تا دو فاز اسید استیک
%10 و حلال AW از یکدیگر جدا شوند ٬ حال شیر قیف دکانتور را باز می کنیم تا اینکه فاز
اسید استیک %10 که پایین قرار گرفته به طور کامل از قیف دکانتور خارج شده درون بشر می
ریزیم . سپس استوانه مدرج cc 10 برداشته زیر شیر قیف دکانتور قرار می دهیم اکنون شیر
دکانتور را باز کرده و مقدار cc10 از محلول AW را که در اثر اختلاطی که به جهت تکان
دادن قیف دکانتور با اسید استیک %10 مقداری از این اسید به صورت خالص و بدون آب در
آن حل شده را جدا می کنیم . حال برای تشخیص میزان اسید استیک استخراج شده توسط حلال
AW آن را توسط سود 1/0 نرمال تیتر می کنیم . که عمل تیتراسیون این محلول به شرح زیر
می باشد :
ابتدا ارلن حاوی cc10 حلال AW را برداشته مقدار 2 تا 3 قطره از معرف فنول فتالیئن اضافه
می کنیم . حال ارلن را در زیر بورت حاوی سود 1/0 نرمال قرار داده شیر بورت را باز
می کنیم به نحوی که سود به صورت قطره قطره وارد ارلن شود . برای انجام درست عمل
تیتراسیون هم زمان با ورود قطرات سود به درون ارلن ٬ خود ارلن را تکان می دهیم این عمل
تا آنجا ادامه پیدا می کند تا اینکه محلول درون ارلن به رنگ ثابت صورتی بسیار روشن تبدیل
شود . پس از پایان عمل تیتراسیون حجم سود 1/ 0 نرمال مصرف شده را از روی بورت
خوانده یادداشت می کنیم .
سپس محلول اسید استیک %10 را که توسط بشر از قیف دکانتوردر مرحله اول جدا کرده بودیم
را دوباره به قیف دکانتور که اکنون حاوی cc90 از حلال AW است باز می گردانیم . حال در
قیف دکانتور را مجددا بسته و تمامی مراحل ذکر شده را برای بار دوم و بار سوم تکرارمی کنیم
با توجه به اینکه در هر مرحله cc10 از حلال AW موجود در قیف دکانتور کاسته می شود
ولی ما آزمایش را بدون اضافه کردن مقدارکاسته شده ازحلال AW به قیف دکانتور پی میگیریم
در نهایت با توجه به روابط ومحاسبات که در زیرذکرشده سه حجم متفاوت از سود 1/0 نرمال
مصرفی درهرمرحله را محاسبه ویادداشت می کنیم .درنهایت نمودارحجم اسیداستیک استخراجی
بر حسب زمان را با توجه به روابط زیر رسم می کنیم .
V1 = 5.1cc t1 = 20min بورت
V2 =5.6 t2=40minبورت
V3 =5.9 t3 = 60minبورت
N1V1 = N2V2
N2V2اسید
N1V1سود
0.1 × V2 (V2 = 5.1)
0.1 × 5.1
0.1 × V2 (V2 = 5.6)
0.1 ×5.6
0.1 × V2 (V2 = 5.9)
0.1 × 5.9
سوال: آیا حلال AW زیر آب و اسید استیك قرار دارد یا بالای آن؟
با توجه به مطالب گفته شده در قسمت گزارش به علت سبك تر بودن حلال به كار رفته در
آزمایش آب واسید استیك زیر حلال AW قرار می گیرد.
نتایج :
با توجه به محاسبات انجام شده و حجم سود مصرف شده در هر نوبت آزمایش به این نتیجه
می رسیم که در هر بار همزدن قیف دکانتور حاوی حلال و اسید استیک %10 ٬ میزان
بیشتری از اسید استیک در حلال حل شده در نتیجه میزان سود مورد نیاز برای خنثی سازی
اسید استیک موجود در حلال نیز افزایش یافته است .
نمودار فوق که بر اساس حجم های بدست آمده در آزمایش رسم شده است ٬ همان طور که
مشاهده میشود دارای شکستگی می باشد در حالی که درحقیقت این تغییرات به صورت یک
نمودار خطی می باشد . که این شکستگی بخاطر خطای موجود در آزمایش می باشد که می
تواند بر اثر فرسودگی دستگاه ها و یا خطای آزمایشگر باشد

فهرست منابع:
1- تریبال رابرت . ترجمه دکتر طاهره کاغذ چی و دکتر مرتضی سهرابی . چاپ پنجم بهمن 1380 انتقال جرم ، نشر مرکز نشر دانشگاهی صنعتی امیرکبیر ( پلی تکنیک تهران )
2- وارن ال . مک کیب . جولیان سی . اسمیت . پیتر هریوت
ترجمه علی اصغر حمیدی ، داود رشتچیان ، محمد مهدی منتظر رحمتی ، چاپ اول 1380 عملیات واحد مهندسی شیمی ، نشر مرکز نشر دانشگاهی
3- ماکس . اس . پیترز . کلاوس دی . تیمرهاوس . ترجمه مجتبی سمنانی رهبر ، ساناز پورمند ، چاپ اول 1380 طراحی کارخانه و تحلیل مباحث اقتصادی برای مهندسین شیمی ، نشر دانشگاه امام حسین (ع)
4- دکتر مرتضی خسروی . سهیلا صداقت . چاپ اول زمستان 76، شیمی نشر دانشگاه امام حسین

+ نوشته شده در  دوشنبه یازدهم اردیبهشت 1391ساعت 15:10  توسط محمد جواد زراعت شعار  | 

برج خنک کننده - مهندسی پلیمر

برج خنک کننده

چکیده :
وقتی مایع گرمی باگازاشباع نشده ای تماس می یابد،قسمتی از مایع تبخیر می شود و دمای مایع افت می کند.مهمترین کاربرد این اصل در سیستمهای خنک کن است که بر مبنای آن دمای آب مصرفی در چگالنده ها و مبدل های گرمایی کاهش می یابد. از جمله مصارف این دستگاه ها در صنایع شیمیایی،نیروگاهها و وسایل تهویه مطبوع می باشد.
انواع سیستم های خنک کننده :
در تمام سیستم های خنک کننده، گرما به آب خنک کن منتقل می شود و دمای سطح فلزات در محدوده ای از زیر صفر ( برای صنایع یخچال سازی ) تا بالای °c100 ( موتور های احتراق داخلی ) متغییر است.در سیستم های گردشی، آب در نقطه ای گرم شده و در جای دیگر خنک می شود. میزان خنک شدن بسته به نوع سیستم و فرآیند متغییر است. سیستم خنک کننده به3 گروه اصلی زیر تقسیم بندی می شوند.
الف) سیستم های گردشی بسته
ب) سیستم های گردشی باز با برج های خنک کننده
پ) سیستم های خنک کن گزار


الف) سیستم های خنک کن بسته :
در سیستم چرخشی کاملاً بسته ،آب خنک کن از میان سیستم عبور کرده بدون اینکه هیچ گونه آبی تلف شود به مخزن اصلی بر می گردد. بنابراین انتخاب باز دارنده مناسب و غلظت آن بدون هیچ گونه محدودیت محیطی انجام می شود.


ب) سیستم های خنک کننده باز گردشی :
سیستم های خنک کننده باز از متداول ترین سیستم های خنک کن می باشند. در این سیستم در هر سیکل گردش، 2 تا 3 درصد آب تبخیر می شود. بنابراین غلظت نمک ها باید در یک سطح معقولی حفظ شوند. برای این کار مقداری از آب تغلیظ شده را از سیستم خارج و آب تازه را جایگزین آن می کنند. از طرفی مواد شیمیایی استفاده شده در این سیستم ها به رودخانه ها و دریاچه ها ریخته می شود. لذا ضروری است که مواد شیمیائی مصرفی با محیط زیست سازگاری داشته باشد.


- سیستم های خنک کن گذرا :
در سیستم خنک کننده گذرا آب از داخل رودخانه، دریا و ... به داخل سیستم فرستاده شده ویک بار از داخل واحدهای خنک کننده عبور می کند و به منبع اصلی خود برگشت داده می شود، بنابراین مصرف آب در این سیستم ها خیلی زیاد است. استفاده کردن مداوم از مواد شیمیایی از نظر اقتصادی محدود می باشد. ضمن آن که ملاحظات زیست محیطی نیز باید رعایت شود.

آشنایی با برجهای خنک کننده : برجهای خنک کن ستونهایی با قطر بزرگ اند واز پرکن هایی استفاده می کنند که تماس خوبی بین گاز ومایع به واسطه افت فشار کم برقرار کنند.


آب گرم توسط نازلهایی به داخل دستگاه پاشیده میشود یاتوسط شبکه ای از لوله ها وناودانهای شیردار روی پرکن توزیع می شود.جدار داخلی برج بیشتر از چوب قرمز،سیمان آسبست،پلی استر تقویت شده با شیشه ونظایر آنها ساخته میشود. البته برجهایی وجود دارند که کاملا از پلاستیک ساخته شده اند.فضای پر شده ی داخلی معمولا به شکل پرچین درست میشود به این ترتیب که تخته های باریکی را یک در میان به صورت ردیفهای افقی وعمودی قرار می دهند.
پرکنها معمولا از نوع پلی پروپیلن می باشند که به شکل میله ویااشکال دیگرقالب ریزی میشوند.
پرکن در تاسیسات جدید،پرکن سلولی یا پرکن فیلمی است که از صفحات کنگره ای پلاستیکی تشکیل شده است.عمق پرکن می تواند کسر اندکی از ارتفاع کل برج باشد. هوا توسط فن ها با کشش واداشته یا با کشش القایی،ودر بعضی برجها با کشش طبیعی ،از پرکن عبور می کند.
کاهش دمای آب دربرج خنک کن عمدتاًازتبخیرناشی می شود٬گرچه وقتی دمای هواکم است ،کمی گرمای محسوس به هواانتقال می یابد.ولی ٬ حتی وقتی هواگرم ترازآب است ،آب راباتبخیرمی توان خنک کردبه شرطی که دمای حباب خیس کم ترازدمای آب باشد.درعمل ٬دمای آب خروجی 5تا F˚15(3 تا C˚8)بیشترازدمای حباب خیس است ،واین اختلاف راتقرب می گویند.تغییردمای آب ازورود تا خروج را برد گویند ٬ و برد معمولا از 10تا F˚30(6تاC˚17 ) است.

انواع اصلی برجهای خنک کن عبارتند از ׃
1_برج های خنک کن با جریان عرضی
2_برجهای خنک کنبا جریان ناهمسو
3_برج های خنک کن پاششی
برج خنک کن باجریان عرضی : در این برج ها که دارای مقطع عرضی مستطیلی هستند،هوا به طور افقی از بسترهای مایل پرکن عبور میکند وآب به طرف پائین جریان می یابد.دریچه های مایل از فرار قطره های آب به خارج جلوگیری می کنند ودیواره های زاویه دار،که به آنها کشش گیر می گویند بیشتر قطره هایی راکه همراه با هوای خروجی برده می شوند، گیر می اندازند .
برج های خنک کن با جریان ناهمسو: در این برجها هوا در زیر لایه ای از پر کن وارد می شود و در جهت مخالف با جریان سقوطی آب به طرف بالا جریان می یابد.این وضعیت برای انتقال گرما موثرترین آرایش استو تقرب دمائی بهتری را ایجاد می کند.
برج های خنک کن پاششی
برجهای پاششی افقی می باشندوازآنهابیشتردرعملیات سردکردن بوسیله مرطوب سازی بصورت آدیاباتیک بااستفاده ازمایع درگردش استفاده می شود.اگرقطرات مایع درشت باشد،شدت جریان گازرامی توان به 8/0تا2/1کیلوگرم برمترمربع ثانیه (600تا900پاوندبرفوت مربع ساعت )نیزرسانیدولی درهرحال بایدازخروج مایع توسط گازجلوگیری شود.
شرح آزمایش :
دستگاه راروشن می کنیم وبااستفاده ازشیرتنظیم دبی را روی40وسپس روی 60 قرار داده و دماهای ورودی وخروجی راثبت می نماییم.می دانیم که آب ازطریق بالای برج واردسیستم می شودپس دمای آب گرم ورودی(5T)ودمای آب سرد خروجی(6T)رابااستفاده ازترمومتراندازه گیری میکنیم.هوای خشک پس ازورودبه واسطه قطرات آب درحال ریزش مرطوب می شودوازخنک کن خارج می گردد.دمای هوای مرطوب ورودی (1T)ودمای هوای مرطوب خروجی(3T)می باشند.همچنین دمای هوای خشک ورودی (2T)ودمای هوای خشک خروجی (4T)خواهدبود.

T119.618.12
T2 26 27.9
T326.432.4
T433.738.2
T544.741.8
T630.334.4

نتیجه گیری :
هدف ازبه کاربردن خنک کن کاهش دمای سیال ورودی می باشد.باافزایش دبی جریان آب ورودی دمای هوای مرطوب خروجی افزایش می یابد.بااین وجوددمای سیال خروجی نیزافزایش یافته بازده سیستم کاهش می یابد.پس بایددبی جریان ورودی رابراساس دمای سیال خروجی ازخنک کن تنظیم نمود

فهرست منابع:
1- تریبال رابرت . ترجمه دکتر طاهره کاغذ چی و دکتر مرتضی سهرابی . چاپ پنجم بهمن 1380 انتقال جرم ، نشر مرکز نشر دانشگاهی صنعتی امیرکبیر ( پلی تکنیک تهران )
2- وارن ال . مک کیب . جولیان سی . اسمیت . پیتر هریوت
ترجمه علی اصغر حمیدی ، داود رشتچیان ، محمد مهدی منتظر رحمتی ، چاپ اول 1380 عملیات واحد مهندسی شیمی ، نشر مرکز نشر دانشگاهی
3- ماکس . اس . پیترز . کلاوس دی . تیمرهاوس . ترجمه مجتبی سمنانی رهبر ، ساناز پورمند ، چاپ اول 1380 طراحی کارخانه و تحلیل مباحث اقتصادی برای مهندسین شیمی ، نشر دانشگاه امام حسین (ع)
4- دکتر مرتضی خسروی . سهیلا صداقت . چاپ اول زمستان 76، شیمی نشر دانشگاه امام حسین

+ نوشته شده در  دوشنبه یازدهم اردیبهشت 1391ساعت 15:10  توسط محمد جواد زراعت شعار  | 

برج آکنده - مهندسی پلیمر

برج آکنده
چکیده:
در دستگاههای برج آکنده، مایع و گاز با هم در تماس مداوم هستند. برای ایجاد سطح تماس بیشتر، داخل برج را از پرکنها پر می کنند، مایع نیز از بالای برج وارد می شود و در اثر عبور از روی پرکنها سبب ایجاد سطح تماس زیری بین دو فاز می شود. ساختار پرکنها باید طوری باشد که نسبت سطح خارجی آن به حجمی که اشغال می کند بزرگ باشد تا در کمترین حجم، بیشترین سطح تماس را ایجاد کند.دستگاه مورد استفاده در اینجا از نوع تصفیه ناپیوسته است. چهار هیتر به مخزن برج متصل هستند که در پایین آن قرار گرفته اند و آن را گرم می کنند. ارتفاع پرکنها ft6 و قطر داخلی برج in 3 می باشد. بخار پس از عبور از داخل برج به کندانسور می رسد و پس از مایع شدن ، به حالت total reflux به برج وارد می شود. به این ترتیب ، مایعی که از بالا وارد می شود با بخاری که به سمت بالا در حرکت است تماس پیدا می کند. مایع برگشتی از یک splitter box که برای تقسیم مایع برگشتی به برج به کار می رود ، می گذرد. در این دستگاه مخلوط آب و الکل وجود دارد، که در انتها غلظت الکل در بالای برج 79% و در پایین برج به 40% می رسد. نمونه برداری زمانی انجام می شود که دستگاه به حالت steady state رسیده باشد. زمان پر شدن بشر در بالای برج 7 ثانیه و در پایین برج 13 ثانیه خواهد بود.

مقدمه تئوری :
در جذب گاز، یک بخار انحلال پذیر به کمک مایعی که گاز حل شونده در آن کم و بیش انحلال پذیر است، از مخلوط آن با یک گاز بی اثر جدا می شود. که به عنوان مثال می توان شستشوی آمونیاک را از مخلوط آمونیاک- هوا مثال زد. ماده حل شده را به روش تقطیر از مایع بازیابی می کنند و مایع جذب شده را می توان دور ریخت یا مجدداً استفاده کرد و متعاقباً گاهی این ماده حل شده را ضمن تماس مایع با گاز بی اثر از مایع جدا کرد که چنین عملیاتی را معکوس جذب یا واجذبی می نامند، اما به طور کلی این فرآیند بیشتر جهت بازیابی و یا جداسازی حل شونده ها استفاده می شود، اما تفکیک حل شونده ها از یکدیگر توسط فرآیند تقطیر صورت می گیرد. حال به سراغ دستگاه متداولی که بیشتر در جذب گاز و برخی عملیات دیگر کاربرد فراوان دارد می رویم.
برج آکنده که نمونه آن در شکل نمایان است مشتمل به یک ستون استوانه ای یا برج است که خود این بخش در برگیرنده: ورودی گاز و فضای توزیع در پائین، ورودی مایع و توزیع کننده در بالا، خروجی گاز و مایع به ترتیب در بالا و پائین، و توده ای از مواد جامد بی اثر موسوم به آکنه که وزن آنها را یک صفحه تحمل می کند، می باشد.
این برج ها معمولاً با یک جریان ناهمسوی سیال عمل می کنند. در موردی که فاز های مایع و بخار موجود باشند، مایع درون ستون به صورت لایه نازکی بر روی پر کن ها( Packing ) پخش می شود و به پائین می آید و بخارات از درون فضای بین پرکنها صعود می کنند. بدین طریق سطح برخورد وسیعی برای مایع و بخار فراهم می شود و عملیات انتقال جرم به طور موثر صورت می گیرد.

انواع پرکنها :
تعداد انواع گونه های پرکنها بیشتر به منظور دستیابی به برخورد موثر بین دو فاز سیالات وجود دارند، این گونه ها معمولاً به دو نوع کلی منظم ( Stacked packing ) و غیر منظم ( Random packing ) طبقه بندی می شوند. منظم بودن یا غیر منظم بودن آنها تنها به داشتن شکل و ساختار هندسی آنها بستگی ندارد، آکنه های غیر منظم در عملیات صنعتی کاربرد فراوان دارند.
موادی که به طور تصادفی و بی قاعده درون برج ریخته می شوند،آنهایی که باید به صورت دستی چیده شودوآنهایی که ساختار یا ترتیب منظمی دارند. بعد اصلی آکنه های ریخته شده ( به صورت غیر منظم ) 6 تا 75 میلی متر ( 4/1 تا 8/3 اینچ ) است و از آکنه های کوچکتر عمدتاً در ستونهای آزمایشگاهی یا نیمه صنعتی استفاده می شود.
آکنه های نامنظم از مواد بی اثر ارزان مانند سفال، چینی یا انواع پلاستیکها ساخته می شوند. و گاه از حلقه های فلزی فولادی یا آلومینیومی با دیواره نازک استفاده می شود. با منظم یا تو خالی ساختن واحدهای آکنه می توان، فضای خالی برای عبور گسترده ی سیالات را فراهم کرد. این آکنه ها پس از درگیر شدن با یکدیگر ساختارهای بازی با تخلخل یا کسر خالی 60 تا 90 درصد را ایجاد می کنند.
آکنه های منظم اولیه از توری های سیمی ساخته می شدند، اما بعدها انواع سوراخ دار موج دار ساخته شدند و صفحات مجاور طوری مرتب شده بودند که مایع به راحتی روی سطح آن پخش می شد، در حالی که بخار از میان مجراهای تشکیل شده توسط موج ها عبور می کرد. زاویه ی مجراها با افق 45 درجه است، جهت این زاویه در صفحات متوالی به صورت یک در میان تغییر می کند. ضخامت هر لایه به چند اینچ می رسد. آکنه های اختصاصی گوناگون از نظر اندازه و آرایش موج ها و کار انجام شده بر روی سطح تفاوت دارند.
برای طراحی یک برج پرشده باید به عوامل مکانیکی نظیر افت فشار، ظرفیت جریان و بار گذاری توجه فراوان نمود، با این مختصر مقدمه ویژگیهای یک پرکن مناسب را بیان می کنیم.
1- ظرفیت بالا: پرکنها باید امکان شدت جریان زیاد بدون ایجاد افت فشار و تجمع مایع در برج را برای سیال فراهم کنند. به علت وجود پدیده ی طغیان با حمل مایع به خارج از برج که توسط بخار می تواند در سرعت های بالاتر از سرعت مجاز سیال صورت پذیرد در ظرفیت های بالا وجود سطح آزاد وسیع ضروری است.
2- افت فشار کم: به دلیل اینکه افت فشار درون پرکنها تابع مستقیمی از سرعت سیالات است، باید فضای خالی مناسب بین پرکنها ایجاد شود تا فشار را در جهت حداقل افت عبور دهد.
3- وزن و ماندگاری کم مایع: میزان بارگذاری و وزن ستون استوانه ای، در صورتیکه وزن پرکنها و مایع مانده در برج کم باشد، کم خواهد بود. البته ماندگاری مایع باید مقداری باشد که نیروی محرکه موثری برای انتقال جرم فراهم شود.
4- بزرگ بودن سطح فعال به ازای واحد حجم: به منظور افزایش کارایی، پرکنها باید سطح برخورد وسیعی را بین دو فاز سیال فراهم کنند. این امر با استفاده از پرکنهایی با شکل های نا منظم، که توزیع گسترده مایع را روی سطحی که در تماس مستقیم با سیال دوم است انجام می دهند،تحقق می یابد.
5- حجم آزاد و وسیع به ازای واحد حجم کل: این ویژگی زمانی اهمیت می یابد که برای انجام واکنش های شیمیایی در فاز گاز، به مدت زمان خاصی نیاز باشد، مانند اکسیداسیون اسید نیتریک توسط جذب دی اکسید نیتروژن در یک محلول آبی.
6- سایر عوامل: هزینه پائین، مقاومت بالا در برابر سائیدگی، خوردگی و عمر طولانی و سازگار بودن پرکنها با سطح داخلی برج.

- بررسی افت فشار:
عوامل اولیه که بر روی افت فشار در برج های پرشده موثر است:
1- شدت جریان سیالات.
2- دانسیته و ویسکوزیته سیالات.
3- اندازه، شکل، جهت گیری و سطح ذرات پرکن.
تغییرات دما و نرخ جذب:
وقتی که گاز غنی وارد یک برج جذب می شود، دمای برج به مقدار قابل توجهی از پائین به بالا تغییر می کند. گرمای جذب ماده ی حل شده دمای محلول را افزایش می دهد، ولی تبخیر حلال سبب کاهش دما می شود. معمولاً اثر کلی این دو عامل افزایش دمای مایع است، اما گاه دما در نزدیکی پائین برج از مقدار بیشینه ای می گذرد. شکل نیمرخ دما به سرعت جذب ماده ی حل شده، تبخیر یا چگالش حلال، و انتقال گرمای بین فازها بستگی دارد. برای به دست آوردن نیمرخ دقیق دمای مایع و گاز محاسبات طولانی مورد نیاز است. وقتی که دمای گاز ورودی به دمای خروجی مایع نزدیک باشد و گاز ورودی سیر شده باشد، تبخیر حلال تاثیر کمی دارد و افزایش دمای مایع تقریباً متناسب با مقدار ماده ی حل شده جذب شده است.
برج های آکنده استوانه های عمودی هستند که از دانه ها و قطعاتی به نام آکنه که دارای سطح نسبتاً زیادی است پر می شوند. این برج ها جهت ایجاد تماس پیوسته بین جریان متقابل گاز و مایع استفاده می شوند. در این دستگاه، فاز مایع از بالا وارد برج شده و با چکیدن به روی آکنه ها، سطح تماس زیادتری جهت برخورد با گاز حاصل می نمایند.
در یک تماس دهنده دیفرانسیلی مانند یک ستون آکنده، عملیات تماس می تواند همان طوری که به صورت دائمی و پیوسته در سرتاسر واحد اتفاق می افتد در نظر گرفته شود.
بنابراین آنالیز یک تماس دهنده دیفرانسیلی مرحله ای می تواند براساس جزء دیفرانسیلی طولی یا ارتفاعی انجام شود.
در ستونهای پرشده، ارتفاعی از ستون که بتواند جداسازی هم ارز با یک صفحه تئوری را ایجاد کند، یک طبقه تئوری ( نظری ) یا HETP نامیده می شود.
روش دقیقتر مقایسه عملیات گوناگون تماس پیوسته بین فازها مستلزم بررسی یک سری از تماس دهنده های دیفرانسیلی مجزا و به دست آوردن نتایجی است که بتواند بر حسب ضرایب انتقال جرم، یا تعداد واحدهای انتقال بیان شود. هر واحد انتقال همانند یک مرحله تئوری است، با این تفاوت که تغییرات دیفرانسیلی در آن به شرایط تعادل و غلظت بستگی دارد.
ضمناً هر طبقه تئوری مربوط به یک سری از تغییرات تعیین و محدود نیز می باشد.
مهمترین ویژگی های آکنه ها عبارتند از:
1- داشتن سطح ویژه بزرگ، بدون در نظر گرفتن سطح مربوط به خلل و فرج میکروسکوپی، سطح ویژه آکنه برابر مجموع سطوح آکنه ها به ازای واحد حجم قسمت آکنه یا پر شده برج است. لازم به ذکر است که اجسام متخلخل به خاطر خلل و فرج خود دارای سطح ویژه زیادی بوده و برای استفاده به عنوان آکنه مناسب نیستند.
2- داشتن خصوصیات لازم جهت جریان یافتن سیالات، این امر موجب می شود که حرکت سیال در داخل برج آسانتر انجام گرفته و افت فشار حاصله، ناشی از برخورد با آنها کمتر باشد تا بتوان از حالت طغیان و انباشتگی مایع در دل برج جلوگیری نمود.
3- بی اثر بودن از لحاظ شیمیایی در مقابل سیالاتی که با آنها در تماس خواهند بود.
4- داشتن استحکام کافی تا به هنگام نقل و انتقال و جابجایی مشکلی پیش نیاید.
5- ارزان بودن قیمت.
بخش تجربی
مواد شیمیایی : الکل ، آب .
شرح دستگاه :
این دستگاه دارای یک دیگ است که این دیگ محفظه ی اصلی جهت جوش آمدن محلول آب و الکل می باشد. حجم تقریبی این محفظهlit 75 است و از جنس فولاد آلیاژی و مقاوم شده با رنگ کوره ای می بهشد که توسط پشم سنگ و پشو شیشه عایق شده است.
روش کار :
در این دستگاه الکل 10% وجود دارد.در ابتدا دستگاه را روشن می کنیم و نقطه set point را روی 60 قرار می دهیم. سپس توسط 6 ترمومتر دماهای نقاط مختلف دستگاه را در هر 20 دقیقه می خوانیم. زمانی که غلظت در تمام برج یکسان شود این دماها یکسان می شوند و دستگاه به حالت steady state می رسد ،در این زمان از پایین و بالای برج نمونه گیری می کنیم. این نمونه گیری به این صورت است که توسط مزورcc 250 از پایین و بالای برج الکل بر می داریم و سپس توسط الکل سنج غلظت الکل را به دست می آوریم.غلظت الکل در بالای برج 97% ، و در پایین برج 40% است. در انتها نیز توسط یک بشرcc 500 و کرنومتر، زمان پر شدن را به دست می آوریم، این زمان در بالای برج 7 ثانیه و در پایین برج 13 ثانیه می باشد.

بخارات خروجی از ریبویلر T1 =
بخارات برگشتی (بالای برج) = T2
بخارات ورودی به کندانسور = T3
دمای آب سرد ورودی = T4
دمای مایع خروجی از کندانسورT5 =
آب سرد خروجی از کندانسورT6 =
20 دقیقه اول:
T1=78 , T2=31.9 , T3=68.7 , T4=14.7 , T5=22.9 , T6=16.5
20 دقیقه دوم:
T1=78.1 , T2=32.5 , T3=67.5 , T4=15.3 , T5=23.7 , T6=17.1
20 دقیقه سوم:
T1=78.2 , T2=32 , T3=67.3 , T4=15.7 , T5=24 , T6=17.4

محاسبات :
HETP = K1.(G) K2.(d) K3.(h) 1/3.(α.μ/ρ)

(α.μ/ρ) = 1.66 ×2×10-5/1.3=2.55(s/ft)×(hr/3600s)=7.08×10-4 (hr/ft)

h = 6 (ft) d = 3in×(1ft/12in)=0.25 (ft)

Q = V/T = (250cm3/7s)×(3600s/hr)×(gr/cm3)×(lb/454gr) = 283.1 (lb/h)

CH3CH2OH = 46.07gr×(1lb/454gr)=0.102 (lb) :اتانول

H2O = 18gr×(1lb/454gr)=0.039 (lb) : آب

(0.4×0.039)+(0.97×0.102) = 0.115 (lb/lbm) :جرم مولکولی

شدت جریان جرمی گاز=(جرم مولکولی Q/(

283.19(lb/hr)/0.115 (lb/lbm) = 2462.52 (lbm/hr)

A = πd2/4 = π×((3in) 2/4)×(ft/12in) 2 = 0.04 (ft) 2

G / شدت جریان جرمی گازA =

0.04(ft2) = 2462.52(lbm/hr)/G G = 61563 (lbm/hr.ft2)

HETP = 2.1×(61563)-0.37×(0.25)1.24×61/3×(7.08×10-4) = 8.21 ×10-6 (lb/ft)

NTU = (UA.L)/(G.Cp)

UA = (10G)0.16/d = (10×61563)0.16/0.25 = 33.76 (lb/hr.ft3)

NTU = (33.76×6)/(61563 ×1.25) = 2.63 (lb.R/Btu)

h= NTU×HETP

NTU = 6/(8.21 ×10-6) = 7.3 (lb.R/Btu)


نتیجه گیری :
زمانی که برج به حالت یکنواخت می رسد ، غلظت در تمام برج یکسان می شود و فرقی نمی کند که از کدام قسمت برج نمونه گیری می کنیم.منبع دمایی در پایین برج قرار دارد و هر چه از پایین به سمت بالا می رویم دما کاهش می یابد.هد مایع سبب می شود که بخارات از داخل مایع خارج شوند،بخار سبک به سمت بالا می رود و بخار سنگین در پایین قرار می گیرد.غلظت الکل در بالای برج 79% است و این نشان می دهد که غلظت ماده سبک در بالای برج بیشتر است،در پایین برج نیز غلظت الکل 40% است که این نشان دهنده ی غلظت کم الکل و غلظت بیشتر ماده سنگین، یعنی آب در پایین برج می باشد.


فهرست منابع:
1- تریبال رابرت . ترجمه دکتر طاهره کاغذ چی و دکتر مرتضی سهرابی . چاپ پنجم بهمن 1380 انتقال جرم ، نشر مرکز نشر دانشگاهی صنعتی امیرکبیر ( پلی تکنیک تهران )
2- وارن ال . مک کیب . جولیان سی . اسمیت . پیتر هریوت
ترجمه علی اصغر حمیدی ، داود رشتچیان ، محمد مهدی منتظر رحمتی ، چاپ اول 1380 عملیات واحد مهندسی شیمی ، نشر مرکز نشر دانشگاهی
3- ماکس . اس . پیترز . کلاوس دی . تیمرهاوس . ترجمه مجتبی سمنانی رهبر ، ساناز پورمند ، چاپ اول 1380 طراحی کارخانه و تحلیل مباحث اقتصادی برای مهندسین شیمی ، نشر دانشگاه امام حسین (ع)
4- دکتر مرتضی خسروی . سهیلا صداقت . چاپ اول زمستان 76، شیمی نشر دانشگاه امام حسین


+ نوشته شده در  دوشنبه یازدهم اردیبهشت 1391ساعت 15:8  توسط محمد جواد زراعت شعار  | 

جداول کتاب ترمودینامیک

تعدادی از دوستان تقاضای جداول کتاب ترمودینامیک رو داشتن که برای دانلود قرار داده شد .

امیدوارم استفاده لازم را ببرید.

برای دانلود روی آیکون pdf کلیک کنید

pdf


در زندگی خانوادگی،شوم ترین کلمات این دو هستند:

“مال من” ، “مال تو”

مورد اعتماد بودن بهتر از دوست داشتنی بودن است . . .

+ نوشته شده در  دوشنبه بیست و یکم فروردین 1391ساعت 1:41  توسط محمد جواد زراعت شعار  | 

غشاء

غشاء :

در فرایند جداسازی، فیلتراسیون را با عناوین فیلتراسیون ذرات، میکروفیلتراسیون، الترافیلتراسیون و نانوفیلتراسیون و اسمز معکوس (هایپرفیلتراسیون) دسته بندی می کنند. فنون فیلتراسیون پیشرفته می توانند ذرات را تا 1 آنگستروم جدا کنند. فیلتر هایی که جزء چهار دسته آخر هستند تحت یک عنوان مشترک با نام غشا قرار می گیرندکه یکی از ابزارهای قدرتمند در فیلتراسیون است. 25 سال است که از تجاری شدن این محصولات می گذرد.

ورود به عرصه نانوفیلتراسیون نیاز به آشنایی کامل با شاخه ها و فرآیندهای مختلف فیلتراسیون و اهمیت هر بخش دارد. بخش مهمی از مطالعات فیلتراسیون مرتبط با محیط متخلخل است. محیط فیلتری قلب هر واحد فیلتراسیون است و هرگونه تغییری در آن، منجر به خروجی متفاوتی می گردد. کارایی سامانه فیلتراسیون موفق تا حدود زیادی به انتخاب یک محیط متخلخل مناسب بر می گردد. انواع فیلترهای مصرفی بر حسب محیط کاربرد شامل فیلترهای لیفی، غشاهای متخلخل پلیمری، مواد متخلخل سرامیکی، مواد مویینه و بسترهای گرانولی (مانند شن) هستند. تخلخل، عبوردهي، خم و راستی مسیر سوراخ ها و ارتباط حفره ها، خواص ماکروسکوپي هستند که با ساختار حفره ها ارتباط دارند.

در ساده ترين تعاريف، فيلتراسيون واحدي است که ماده ای را طی فرایندی از ماده دیگر جدا می کند. محصول اصلی فیلتراسیون جامد پر ارزش یا سیالی تمیز خواهد بود. مایع و گاز دو سیال معمول عبوری از فیلترها هستند. به جداسازي ذرات معلق از يک مایع با عبور آن از يک محيط يا غشاي متخلخل فیلتراسیون مایع اطلاق می شود. زماني که سيال يا محلول حاوي ذرات معلق داخل سوراخ ها يا حفره های محيط فيلتر مي شود، ذرات جامد در سطح پشت فيلتر و در برخي از موارد، ديواره سوراخ هاي فيلتر مي مانند و سيال از فيلتر عبور مي کند؛ به این سیال فیلتریت گفته می شود.

مهمترین ویژگی فیلترها تخلخل است، به همین دلیل فیلتر را یک محیط متخلخل می نامند. سوراخ ها درصد بسيار زيادي از حجم فیلتر را در بر مي گيرند و شبکه پيچيده اي از حفره ها را مي سازند. روش ايجاد اين حفره ها، ميزان ارتباط داخـلي آنها، موقعيت آنـها، ابــعاد و شـکل آنها، خـواص محيط متخلـخل را شــکــل مي دهند. تخلخل در خواص دیگری مانند عبور دهی حرارتی یا حایل حرارتی تاثیر دارد. بنا به تعریف تخلخل نسبتي از حجم محيط متخلخل است که شامل فضای خالی می باشد. رابطه به بیان دقیق میزان تخلخل اشاره دارد.

نانوفیلتراسیون برای نرم کردن و جداسازی مواد آلی طبیعی استفاده می شود و شامل ذرات محدود به ابعاد بزرگتر از 0.001 میکرون می شود. نانوفیلتراسیون از نظر هزینه انرژی و دفع یون و ابعاد سوراخ در بین روشهای دیگر شرایط بهینه ای را ایجاد کرده است. با یک نانوفیلتر می توان میزان غلظت یک باکتری را در یک محصول غذایی محلول به صفر رساند. در نمودار زیر تاثیر یک نانوفیلتر در کاهش آلاینده هوا بر حسب(ppm) به مقدار صفر مشاهده می شود. البته این فرایند تنها به کمک یک لایه صورت نمی گیرد، بلکه مجموعه از خصوصیات از لایه های مختلف با محوریت یک لایه اصلی فرایند فیلتراسیون را کامل می نمایند.

الترافیلتراسیون جهت جداسازی پروتئین ها و مواد آلی استفاده می شود و مولکولهایی بزرگتر از 0.005 میکرون را جدا می کند. فرایند دیالیز در این محدوده قرار می گیرد.

میکروفیلتراسیون فرایند غشایی کم فشاری است که برای جداسازی ذرات، جامدات معلق کوچک و موادی دیگر مثل باکتری ها و کیست ها از آب استفاده می شود و مولکولها و ذراتی بزرگتر از 0.2 میکرون را جدا می کندکه پربازده ترین روش برای آماده سازی آب جهت انجام فرایند اسمز معکوس است. میکروفیلتراسیون در صنایع تجاری برای فرایند مواد غذایی، آب میوه، نوشابه، ساخت چیپ کامپیوتری و برای استریلیزه کردن داروهایی که نمی توانند حرارت داده شوند، استفاده می شود.

جنس غشاها

سرامیکی (مقاومت بالای حرارتی)

پلیمری (تخلخل بالا)

لیفی(مساحت سطح بالا و تخلخل بالا)

فلزی (مقاومت در برابر خوردگی)

طراحی

در طراحی یک سامانه فیلتراسیون موارد 1 تا 9 مورد اهمیت است‎:

1- خواص فیزیکی شیمیایی ذرات و سیال

2- پیش بینی نرخ جریان

3- ساختمان فیلتر

4- نسبت جریان سیال به مساحت فیلتر

5 - روش پاکسازی کیسه

6- نرخ زمان فیلتر کردن به زمان پاکسازی

7- تنش های پاکسازی و فیلتراسیون

8- طراحی مسیرهای عبور

9- فضا و هزینه های مورد نیاز

کاربردهای این فیلترها در فیلتراسیون هــوا، فیلتراسیون آب شرب و کشاورزی، فیلتراسیون فرایــندهای ساخـت صنعتی، فیلتراسیون در سامانه های تهویه، فیلتراسیون روغن ، پاکسازی محیط زیست، نیروگاهها، کارخانجات پتروشیمی، کنترل فاضلاب، مواد شیمیایی و بهداشتی، عطر سازی، کاربردهای نانو فیلتراسیون، فیلتر کردن سیالات و روغن های صنعتی در کارخانجات ماشین سازی، فیلتراسیون مواد غذایی به خصوص محصولات لبنی، فیلتراسیون خون و دیالیز، کاغذ سازی برای استخراج آب و مواد شیــمیــایی از محلــول آبی و صنایع الکترونیک است.

----------------------- 

----------------------------------

---------------------------------------------

غشاء (ویکی پدیا) :

غشاء به معنای پوسته می‌باشد.

  • در کل به هر نوع پوسته یا پرده نازک و تراوا یا نیمه تراوا گفته می‌شود.

غشاها برای جداسازی محلول‌ها و یا مخلوط گازها کاربرد دارند که بسته به خواص غشاء اعم از استحکام، محافظSupport، مواد تشکیل دهنده می‌تواند کاربردهای گوناگونی داشته باشد. در پالایشگاه‌ها برای جداسازی هیدروکربن‌های خطی از غیر خطی جهت بهبود عدد اکتان خروجی از واحد آلکیلاسیون به کار می‌رود.

غشاها را می‌توان از مواد مختلفی ساخت. به‌عنوان اولین طبقه‌بندی، غشاها را می‌توان به دو گروه غشاهای بیولوژیکی و سنتزی تقسیم نمود. غشاهای بیولوژیکی برای زندگی بر روی زمین ضروری هستند. هر سلول زنده با یک غشا احاطه شده‌است، اما این غشاها اساسا از نظر ساختار و عملکرد با غشاهای سنتزی متفاوت هستند. غشاهای سنتزی را می‌توان در دو گروه زیر تقسیم‌بندی نمود :

------------------

-----------------------

-----------------------------

غشاء پلیمری (ویکی پدیا) :

از مهمترین خصوصیات ساختاری یک غشاء، طبیعت شیمیایی آن است. طبیعت شیمیایی هر غشاء شامل حضور گروه‌های مولکولی، ساختار میکروبلوری آن، آمار حفره‌ها (اندازه حفره، توزیع اندازه حفره و دانسیته و حجم‌خالی) و میزان تقارن ساختاری آن می‌باشد. مهمترین خصوصیات هر غشا از نظر عملکرد در یک سیستم جداسازی، تراواش‌پذیری و گزینش‌پذیری غشا می‌باشد.

تاریخچه

پیش از سال ۱۹۶۰، بیشتر علایق در زمینه تحقیق پیرامون غشاء در حد مطالعات و پژوهش‌های آکادمیک بود. نیترات سلولز، اولین پلیمر سنتزی یا نیمه‌سنتزی بود که توسط Schoenbein در سال ۱۸۴۶ مورد مطالعه قرار گرفت. این پلیمر در سال ۱۸۶۹ به صورت تجاری تولید شد. در سال ۱۸۵۵، فیک غشاهای از جنس نیترات سلولز را در مطالعه کلاسیک خود به نامUeber Diffusionبه کار برد. در سال ۱۸۶۰، شوماخر لوله آزمایش را در محلول نیترات سلولز فرو برد و اولین غشا لوله‌ای را ارائه کرد.

  • بین سال‌های ۱۹۱۵ و ۱۹۱۷، Brown، گروهی از غشاهای نیترات سلولز را با متورم کردن لایه متراکم در محلول آب- الکل و در غلظت‌های مختلف تولید نمود. همچنین او اولین فردی بود که استات سلولز را برای غشا پلیمری به کار برد. Zsigismondy و Elford دو سری از غشاهای متخلخل نیترات سلولز را تولید کردند که این عمل پایه ایجاد اولین غشاهای میکروفیلتراسیون تجاری در سال ۱۹۲۷ در آلمان شد.
  • دوره طلایی غشاشناسی در سال ۱۹۶۰ با ابداع اولین غشا اسمزمعکوس از جنس استات سلولز توسط لوئب و سوریراجان آغاز شد که این پیشرفت حاصل همسو کردن دو زمینه تحقیقاتی و تجاری بود، اولی در نمک‌زدایی با اسمزمعکوس و بعدی در دیگر فرایندها و کاربردهای غشا بود.
  • در طی این دوران، پیشرفت‌های مهمی در هر زمینه‌ای از غشاشناسی صورت گرفت که از جمله این پیشرفت‌ها در کاربردهای غشا، ابزار تحقیق، فرایندهای تشکیل غشا، ساختار فیزیکی و شیمیایی، پیکربندی‌ها و بسته‌بندی غشاها می‌باشد.

در ایران این فناوری نخستین بار در سال ۱۳۸۴ توسط متخصصان شرکت پارسیان پویا پلیمر تولید شد.

پلیمرهای مورد استفاده در غشاهای پلیمری

غشاها را می‌توان از مواد مختلفی ساخت. به‌عنوان اولین طبقه‌بندی، غشاها را می‌توان به دو گروه غشاهای بیولوژیکی و سنتزی تقسیم نمود. غشاهای بیولوژیکی برای زندگی بر روی زمین ضروری هستند. هر سلول زنده با یک غشا احاطه شده‌است، اما این غشاها اساسا از نظر ساختار و عملکرد با غشاهای سنتزی متفاوت هستند. غشاهای سنتزی را می‌توان در دو گروه زیر تقسیم‌بندی نمود:

۱) غشاهای آلی (پلیمری) ۲) غشاهای غیرآلی.

  • براساس تقسیم‌بندی غشاها براساس ساختار آن (که در بخش روش‌های ساخت غشا ارائه شد) غشاهای متخلخل را می‌توان در فرایندهای اولترافیلتراسیون و میکروفیلتراسیون استفاده کرد و غشاهای غیرمتخلخل (چگال) را می‌توان در فرایندهای جداسازی گازها و تراوش تبخیری به‌کار برد. دلیل این تقسیم‌بندی، نیاز متفاوت برای استفاده از پلیمرها به‌عنوان غشا می‌باشد. برای غشاهای متخلخل اولترافیلتراسیون و میکروفیلتراسیون، انتخاب جنس غشا براساس احتیاجات فرایندی (ساخت غشا)، تمایل سیستم به گرفتگی و پایداری حرارتی و شیمیایی غشا می‌باشد. اما برای پلیمرهایی که در غشاهای غیرمتخلخل جداسازی گاز و تراوش تبخیری استفاده می‌شوند، انتخاب نوع پلیمر مستقیماً عملکرد غشا را (گزینش‌پذیری و شار عبوری) تحت تأثیر قرار می‌دهد. بنابراین انتخاب جنس غشا در افزایش بهره‌وری سیستم امری مهم وضروری به نظر می‌رسد.
  • به عنوان نمونه در جدول ۱ لیستی از پلیمرهایی که در غشاهای میکروفیلتراسیون و اولترافیلتراسیون مورد استفاده قرار می‌گیرند ارائه شده‌است. همچنین در جدول (۲) لیستی از پلیمرهای مصرفی در ساخت غشاهای جداسازی گاز آورده شده‌است.


جدول (۱): مواد پلیمری مورد استفاده در غشاهای میکروفیلتراسیون و اولترافیلتراسیون

پلی کربنات

پلی وینیلیدن- فلوئورید

پلی تترا فلوئورو اتیلن

پلی پروپیلن

پلی آمید

استرهای سلولزی

پلی سولفون

پلی اتر آمید

پلی اتر اتر کتون


جدول (۲): مواد پلیمری مورد استفاده در غشاهای جداسازی گازها

پلی سولفون و پلی اتر سولفون

استات سلولز

پلی آمید و پلی اتر آمید

پلی کربنات (برم‌دار شده)

پلی فنیلن اکسید

پلی متیل پنتین

پلی دی متیل سیلوکسان

پلی وینیل تری متیل سیلان

+ نوشته شده در  دوشنبه دوم خرداد 1390ساعت 17:59  توسط محمد جواد زراعت شعار  | 

شبیه سازی مولوکولی

اشنایی با انواع شبیه سازی
«شبيه سازي» (cloning  ) يکي از پيشرفته ترين دستيافته هاي بشر در زمينه علم پزشکي و مهندسي ژنتيک است که هر مرحله پيشرفت آن جنجال هاي بسيار زيادي را به همراه دارد. صرف نظر از پيامدهاي اخلاقي شبيه سازي که در اين مطلب مورد بحث ما نيست، در اين مقاله سعي شده است بيشتر به خود «شبيه سازي» و روش هاي آن پرداخته شود. روش هايي که شبيه سازي انسان فقط بخشي از آن هاست و حوزه بسيار گسترده اي را شامل مي شود. امکان «شبيه سازي» انسان زماني مطرح شد که دانشمندان اسکاتلندي در موسسه روسلين، «دالي» را توليد کردند. «دالي» که به «دالي گوسفنده» شهرت داشت، گوسفندي بود که توليد آن در سراسر دنيا با عکس العمل هاي متفاوتي از لحاظ علمي و اخلاقي مواجه شد. اين کار که درسال 1997 از سوي مجله «نيچر» به عنوان مهم ترين تحقيق علمي سال برگزيده شد، در کنار نگراني هاي اخلاقي بسيار زيادي که در برداشت، افق جديدي در علم ژنتيک پيش روي دانشمندان گشود و اميدواري هاي زيادي براي بهبود زندگي بشر ايجاد کرد. به دليل حساسيتي که توليد «دالي» در برداشت، رسانه ها توجه خاصي به پديده شبيه سازي نشان دادند، اما اين نوع شبيه سازي تنها يک نوع خاص از چندين روش شبيه سازي موجود در علم پزشکي و ژنتيک است که به شبيه سازي بازتوليدي مشهور است. علاوه براين نوع شبيه سازي، چند نوع ديگر شبيه سازي هم وجود دارد که مي توان از آن ها علاوه بر بازتوليد يک ارگانيزم خاص در انجام ديگر تحقيقات پزشکي هم استفاده کرد. در اين مطلب به طور کلي در مورد سه نوع شبيه سازي بحث خواهيم کرد: 
1 ) شبيه سازي «دي ان اي» يا فناوري «دي ان اي» بازترکيب شده: در اين قسمت مي توان فناوري «دي ان اي» بازترکيب شده، شبيه سازي «دي ان اي»، شبيه سازي مولکولي يا شبيه سازي ژني را در کنار هم دسته بندي کرد، چون همه از يک پروسه مشترک پيروي مي کنند. انتقال دستواره (تکه اي از دي ان اي اصلي که براي تکثير از آن جدا مي شود) از يک ارگانيزم به يک عنصر ژنتيک خود همانندساز مانند پلازميد باکتريايي. دانشمنداني که بر روي يک ژن خاص کار مي کنند معمولا از پلازميد باکتريايي براي توليد کپي هاي چندگانه همان ژن استفاده مي کنند. پلازميدها کروموزوم هاي اضافي خود همانندساز مولکول دايره اي «دي ان اي» هستند که جدا از ژنوم هاي معمولي باکتريايي هستند. پلازميدها و ديگر گونه هاي ناقل شبيه سازي، توسط محققان ژنوم انسان براي تکثير ژن ها و ديگر تکه هاي کروموزوم که مواد شناسايي کافي براي تحقيق بيشتر توليد مي کنند استفاده مي شوند. براي شبيه سازي يک ژن، يک تکه از «دي ان اي» که ژن مورد نظر را شامل مي شود از «دي ان اي» کروموزومي توسط آنزيم هاي محدودکننده جدا مي شود و سپس با يک پلازميد که توسط همان آنزيم هاي محدودکننده جدا شده است، ترکيب مي شود. هنگامي که يک تکه از «دي ان اي» کروموزومي به ناقل شبيه سازي در آزمايشگاه وصل مي شود، به آن مولکول «دي ان اي» بازترکيب شده گفته مي شود. با انتقال اين مولکول به سلول ميزبان مناسب، «دي ان اي» بازترکيب شده در کنار «دي ان اي» سلول ميزبان بازتوليد مي شود.
2 ) شبيه سازي بازتوليدي: شبيه سازي بازتوليدي فناوري است براي توليد يک حيوان که از همان هسته «دي ان اي» بهره مي برد که حيواني ديگر در همان زمان يا پيش از آن، آن هسته «دي ان اي» را داشته يا دارد. «دالي» گوسفند معروف اسکاتلندي ها با همين روش شبيه سازي شده بود. در اين پروسه که انتقال هسته سلول تکثير شونده نام دارد، دانشمندان مواد ژنتيک هسته يک سلول بالغ اهدا»کننده را به يک تخم که هسته و همين طور مواد ژنتيک آن جدا شده اند منتقل مي کنند. اين تخم که «دي ان اي» يک سلول اهدا»کننده را در خود دارد بايد با جريان هاي شيميايي يا الکتريکي مراقبت شود تا براي تقسيمات سلولي تحريک شود. هنگامي که جنين شبيه سازي شده به سطح مناسبي از پيشرفت مي رسد به رحم يک ميزبان مونث منتقل مي شود جايي که تا تولد به پيشرفت خود ادامه مي دهد. موجودي که با روش انتقال هسته توليد مي شود، نمونه شبيه سازي شده واقعي حيوان اهدا»کننده نيست و فقط «دي ان اي» کروموزومي و هسته اي آن همانند حيوان اهدا»کننده است. در اين زمينه موفقيت پروژه «دالي» بسيار چشمگير است چراکه اثبات کرد مواد ژنتيک يک سلول بالغ مي توانند براي توليد يک ارگانيزم جديد کامل مورد استفاده قرار گيرند. پيش از اين دانشمندان بالاتفاق تصور مي کردند هنگامي که سلولي به کبد، قلب، استخوان يا هر نوع ديگري از بافت هاي بدن تخصيص داده مي شود، ديگر استفاده از آن ها در بافت هاي ديگر امکان ندارد و ديگر ژن هايي که در سلول بودند و نيازي به آن ها نبود غيرفعال مي شوند. برخي محققين براين باورند که اشتباه يا کامل انجام ندادن پروسه باز برنامه ريزي، سبب مرگ، نقص عضو و معلوليت حيوانات شبيه سازي شده خواهد شد. 
3 ) شبيه سازي درماني: اين شبيه سازي که به شبيه سازي جنيني هم معروف است در واقع توليد جنين هاي انساني براي استفاده در تحقيقات است. هدف از انجام اين شبيه سازي توليد انسان هاي شبيه سازي شده نيست، بلکه هدف کشت سلول هايي است که مي توانند در تحقيقات پيشبردي انسان و همچنين درمان بيماري ها مورد استفاده قرار گيرند. اين سلول ها براي محققان بيومکانيک بسيار با اهميت هستند براي اين که مي توان از آن ها براي توليد هر نوع سلولي که در بدن انسان وجود دارد استفاده کرد. اين سلول ها پس از گذشت 5 روز از تقسيم تخم، از آن استخراج مي شوند. پروسه استخراج باعث از بين رفتن جنين مي شود که اين مساله نگراني هاي اخلاقي فراواني را در پي دارد. محققان اميدوارند روزي اين سلول هاي ساختگي، جايگزين مناسبي براي سلول هايي شوند که بر اثر بيماري هايي نظير آلزايمر، سرطان و... از بين رفته اند. 
دلائل شبيه سازي
پس از آشنايي جزيي با روش هاي مختلف شبيه سازي، اين سوال مطرح مي شود که اصلا چرا انسان بايد شبيه سازي شود؟ و يا اين که آيا تا به حال هيچ انساني شبيه سازي شده است؟ در مورد شبيه سازي انسان بايد گفت که تا به حال هيچ انساني از کشت سلول هاي يک انسان ديگر توليد نشده است. اما در مورد اين که چرا انسان بايد شبيه سازي شود،  گروهي از دانشمندان موارد ذيل را ذکر مي کنند; يکي از کاربردهاي شبيه سازي مي تواند براي زوج ناباروري اتفاق بيفتد که تمايل بسيار زيادي به بچه دارند. اين بچه که از يکي از والدين شبيه سازي مي شود، مسلما در دوران کودکي فشارهاي فيزيولوژيکي بسيار زيادي را متحمل خواهد شد. کاربرد ديگر شبيه سازي مي تواند شبيه سازي استعدادهاي بشري براي چند نسل باشد. مثلا مي توان با استفاده از «دي ان اي» اينشتين، وي را شبيه سازي کرد، اما هيچ تضميني نيست که اينشتين جديد همانند آلبرت باهوش ما همان راهي را برگزيند که اينشتين به خاطر آن به شهرت رسيده است. يکي ديگر از موارد شبيه سازي، توليد جنين هاي تحقيقاتي است که پيش تر بدان اشاره شد. با همه علاقه اي که بشر به شبيه سازي دارد، اين پديده داراي خطرات و ايراداتي است که به صورت مختصر به آن ها اشاره خواهد شد. شبيه سازي بازتوليدي بسيار گران است و اميد انجام مطلوب آن بسيار کم است. نزديک به 90 درصد اقدام هاي شبيه سازي در اين زمينه به نتيجه نمي رسند و براي انجام يک شبيه سازي موفق، بايد نزديک به 100 بار انتقال هسته اي صورت گيرد و در همين يک مورد موفق هم، حيوان شبيه سازي شده نسبت به عفونت ها بسيار غيرمقاوم است. نمونه آن هم «دالي» بود که بر اثر عفونت ريه مرد. علاوه برآن رشد تومورها در آن به سرعت انجام مي شود و کوچک ترين بيماري براي اين نوع حيوانات، مي تواند منجر به مرگ شود. اکثر اين حيوانات رشد غيرطبيعي دارند و گاه به دلايل نامشخص به يک باره مي ميرند. از ميان حيواناتي که تاکنون شبيه سازي شده اند، مي توان به گوسفندها، موش ها، گاوها و حيوانات خانگي از قبيل گربه اشاره کرد. اما يکي از وسوسه انگيزترين شبيه سازي ها، شبيه سازي حيوانات ماقبل تاريخ مانند دايناسورها است، بدين ترتيب که با استفاده از «دي ان اي» بازمانده از آن ها در سنگواره ها، آن ها را شبيه سازي کرد. هنگامي که اين فرضيه مطرح شد، موافقت ها و مخالفت هاي زيادي با آن شد، اما اين التهابات به زودي فروکش کرد، چون اين موجودات بيش از 65 ميليون سال پيش از بين رفته اند و اين در حالي ست که «دي ان اي»، فقط 10 هزارسال عمر مي کند. نظريه بعدي شبيه سازي ماموت ها بود که کمتر از 10 هزار سال پيش زندگي مي کرده اند. با اين حال پيدا کردن «دي ان اي» مناسب ماموت ها غيرممکن به نظر مي رسد. با اين تفاسير شبيه سازي موجودات منقرض شده فعلا امکان ناپذير است. البته شايد روزي فرزندان شبيه سازي شده دانشمندان امروزي بتوانند دايناسورها را هم اهلي کنند.
سايت دام آوران
مدلسازی مولکولی و نانوتکنولوژی

در سازمان ­دهی و دستکاری مواد در مقیاس نانو ، لازم است تمامی ابزار موجود جهت افزایش کارایی مواد و وسایل بکار گرفته شود. یکی از این ابزار ، شیمی تحلیلی ، خصوصا مدل ‌سازی مولکولی و شبیه ‌سازی است. امروزه ابزار تحقیقاتی فراگیری مانند روشهای شیمی تحلیلی مزیتهای فراوانی نسبت به روشهای تجربی دارند. میهیل یورکاز شرکتContinental Tire North America می‌گوید:"روشهای تجربی مستلزم بهره‌گیری از نیروی انسانی ، شیمیایی ، تجهیزات ، انرژی و زمان است. شیمی تحلیلی این امکان را برای هر فرد مهیا می‌سازد که فعالیتهای شیمیایی چندگانه‌ای را در 24 ساعت شبانه ‌روز انجام دهد. شیمیدانها می‌توانند با انجام آزمایشها توسط رایانه ‌، احتمال فعالیتهای غیرمؤثر را از بین ببرند و گستره احتمالی موفقیتهای آزمایشگاهی را وسعت دهند.
نتیجه نهایی این امر ، کاهش اساسی در هزینه‌های آزمایشگاهی (مانند مواد ، انرژی ، تجهیزات) و زمان است." از طرف دیگر ، در شیمی تحلیلی سرمایه‌ گذاری اولیه جهت تهیه نرم‌افزار و هزینه‌های وابسته از جمله سخت‌افزار جدید ، آموزش و تغییرات پرسنل بسیار بالا خواهد بود. ولی با بکار گیری هوشمندانه این ابزار می‌توان هریک از هزینه‌های اولیه را نه تنها از طریق صرفه‌جویی در هزینه آزمایشگاه بلکه بوسیله فراهم نمودن دانشی که منجر به بهینه ‌سازی فرآیندها و عملکردها می‌شود، جبران ساخت.
این موضوع برای شیمیدانها بسیار مناسب است، ولی روشهای شبیه‌سازی چطور می‌توانند برای نانوتکنولوژیستها مفید واقع شود؟ محدودیتهای آزمایشگر در مقیاس نانو ، زمانی آشکار می‌شود که شگفتی جهان دانشمندان نظری وارد عمل می‌شود. در اینجا هنگامی که دانشمندان قصد قرار دادن هر یک از اتمها را در محل مورد نظر دارند قوانین کوانتوم وارد صحنه می‌شود. پیش‌بینی رفتار و خواص در محدوده­ای از ابعاد برای نانوتکنولوژیستها حیاتی است.
مدل‌سازی رایانه‌ای با بکارگیری قوانین اولیه مکانیک کوانتوم و یا شبیه‌سازیهای مقیاس میانی ، دانشمندان را به مشاهده و پیش‌بینی رفتار در مقیاس نانو و یا حدود آن قادر می‌سازد. مدلهای مقیاس میانی با بکارگیری واحدهای اصلی بزرگتر از مدلهای مولکولی که نیازمند جزئیات اتمی است، به ارائه خواص جامدات ، مایعات و گازها می­پردازند. روشهای مقیاس میانی در مقیاسهای طولی و زمانی بزرگتری نسبت به شبیه­سازی مولکولی عمل می‌کنند. می‌توان این روشها را برای مطالعه مایعات پیچیده ، مخلوطهای پلیمر و مواد ساخته‌شده در مقیاس نانو و میکرو بکار برد.

 منبع: دانشنامه­ی رشد
+ نوشته شده در  شنبه سی و یکم اردیبهشت 1390ساعت 10:53  توسط محمد جواد زراعت شعار  | 

شبیه سازی دینامیک مولکولی

کارگاه شبیه سازی دینامیک مولکولی بوسیله نرم‌افزار LAMMPS

قراره کارگاه آموزشی شبیه‌سازی دینامیک مولکولی با نرم‌افزار LAMMPS را در دانشکده فیزیک دانشگاه تهران اجرا کنیم. این کارگاه، سرآغاز مجموعه کارگاه‌هایی خواهد بود که توسط زیر شاخه فیزیک محاسباتی انجمن فیزیک ایران برگزار می‌شود. در ادامه این کارگاه ها محاسبات موازی و محاسبات با نرم‌افزارهای رایج دیگر نظیر اسپرسو، اسپرسوی کوانتمی، محاسبات کوانتمی و غیره نیز توسط گروه های متخصص دیگر توسط انجمن و با همکاری دانشگاه های دیگر برگزار خواهد شد.

این کارگاه قرار است رنگ و بوی نانو داشته باشد و موضوعاتی چون
  • آشنایی با شبیه سازی دینامیک مولکولی
  • شبیه سازی نانوساختارها
  • شبیه سازی نانولوله‌های کربنی و صفحات گرافین
  • محاسبه خواص مکانیکی و حرارتی نانوساختارها
  • شبیه سازی با پتانسیلهای درشت دانه
  • شبیه سازی سیستمهای زیستی نظیر پروتئینهامورد بررسی قرار خواهد گیرد.

    یکی از نکاتی که ما امیدواریم در این دوره به آن دست پیدا کنیم، همراهی بیشتر شرکت کنندگان با مباحث مطرح شده است. معمولا در کارگاه ها در مدت زمان کوتاه، اطلاعات زیادی به شرکت کنندگان داده می‌شود، درحالیکه شاید آنها فرصت مناسب برای تمرین روی آنها رو نداشته باشند. عملا ما راه‌کاری که برای این دوره در نظر گرفته‌ایم، برگزاری دوره در دو روز با فاصله زمانی یک هفته ای است. در روز اول به شرکت کنندگان اطلاعات اولیه و آموزشهای مقدماتی تر داده خواهد شد. در پایان روز اول آنها عملا قابلیت استفاده از نرم‌افزار و شبیه‌سازیهای ابتدایی تر را خواهند یافت.

    در طول یک هفته شرکت‌کنندگان می‌توانند به تمرین روی مباحث مطرح شده بپردازند، و عملا پیش‌روی مناسبی در شبیه‌سازی با آن به دست بیاورند. در هفته دوم، شبیه‌سازهای حرفه ای تر مورد بررسی قرار خواهد گرفت که در مجموع ، مباحث بالا پوشانده خواهد شد. انشا الله امیدواریم که مجموعه مناسبی از اطلاعات، و راهی سریع برای ورود حوزه‌ی وسیع استفاده کنندگان از این نرم‌افزار ارائه بشود.

    برای اطلاعات بیشتر و ثبت نام، میتوانید به سایت انجمن فیزیک ایران مراجعه کنید:
    سلسله کارگاه‌های شبیه‌سازی در مقیاس نانو

    دوره آموزشی نرم افزار LAMMPS
    (همراه با کارگاه عملی)

    ۵ و ۱۲ اسفند ۱۳۸۹
    دانشکده فیزیک دانشگاه تهران
  •  

    -----------------------------

    ------------------------------------------

    ------------------------------------------------------------

     

    یکی از مشکلاتیکه در تدریس دینامیک مولکولی با آن مواجه بودم٬ معرفی یک نرم‌افزار مناسب برای دیدن نتایج شبیه‌سازیها بود. از قبل با نرم افزار VMD که در حقیقت مخفف Visual Molecular Dynamics هست آشنا بودم، ولی نمیدونستم میشه این نرم افزار رو به عنوان نرم افزار آموزشی توی درس محاسباتی گنجوند یا نه!


     

    حالا که بیشتر با این نرم افزار آشنا شدم نحوه نصب اونرو اینجا میارم. در یک پست دیگه سعی میکنم ساده ترین روش کار کردن با اونو بیارم.


     

    باید ابتدا به سایت VMD مراجعه کرده و فایل سورس اونو دانلود کنیم، از اینجا:
    http://www.ks.uiuc.edu/Research/vmd/
    هم ویرایش ویندوز داره، هم لینوکس.
    برای ویندوز که فایلش رو دانلود و نصب می کنیم.

    در لینوکس، وابسته به نوع کامپیوتر، یکی از نسخه ها رو دانلود می کنیم، مثلا LINUX OpenGL. سپس فایل رو با دستور
    tar -xvzf vmd-1.8.4.bin.LINUX.opengl.tar.gz
    باز میکنیم. ابتدا باید آنرا configure کنیم، برای سیستم خودمون. وارد فولدر مربوطه میشویم:
    cd vmd-1.8.4
    و برای لینوکس این نرم افزار را آماده نصب می کنیم:
    ./configure LINUX
    سپس به فولد src می رویم و نرم افزار را نصب می کنیم:
    cd src
    make install

    البته برای قسمت آخر باید اختیارات روت داشته باشیم تا نرم افزار نصب شود.

    اخیرا در بعضی از سیستمهای عامل که این نرم افزار را نصب می‌کردم اشکالی به وجود می آمد. بعد از نصب صفحه‌ی کامند vmd باز و بسته می‌شد و نرم‌افزار درست کار نمی‌کرد. این اشکال از چند جا ممکن است ناشی شود. سیستم عامل فونت مناسب xterm را ندارد، و یا اینکه xterm روی سیستم نصب نیست و یا ورژنهای قدیمی "libstdc ++" موجود نیست. برای رفع هر یک از این اشکالات باید نرم‌افزارهای مربوطه را بر روی سیستم عامل خود نصب نمایید. مثلا در فدورا می‌توانید با دستور yum این کار را انجام دهید.

    در هنگام کار کردن با این نرم افزار بعضی چیزهای دیگر هم یاد گرفتم به مرور به این پست اضافه می‌کنم؛ البته اینها را از خانم هنگامه شمس یاد گرفتم.
    اگر با gromacs کار می‌کنید، و نتیجه‌ی شبیه‌سازی شما در یک فایل شامل مسیرهای شبیه سازی ( با پسوند trr) ریخته شده است، ابتدا آنرا لود کنید. سپس منوی زیر را دنبال کنید:
    Graphics -> Representations -> Create Rep
    و در این صورت شما می‌توانید نتایج شبیه‌سازی را ببینید. با انتخاب Drawing Method مناسب ( مثلا bond و یا CPK و یاDynamic bonds ) می توانید نتایج را ببینید.

    واژگان---------------------
    + نوشته شده در  شنبه سی و یکم اردیبهشت 1390ساعت 10:52  توسط محمد جواد زراعت شعار  | 

    نانوتکنولوژی

    یک نانومتر چقدر است؟

    یک نانومتر یک میلیاردم متر (10-9 m) است. این مقدار حدودا چهار برابر قطر یک اتم است. مکعبی با ابعاد 2.5 نانومتر ممکن است حدود 1000 اتم را شامل شود. کوچکترین آی سیهای امروزی با ابعادی در حدود 250 نانومتر در هر لایه به ارتفاع یک اتم ، حدود یک میلیون اتم را در بردارند. در مقایسه یک جسم نانومتری با اندازه‌ای حدود 10 نانومتر ، هزار برابر کوچکتر از قطر یک موی انسان است.

    امکان مهندسی در مقیاس مولکولی برای اولین بار توسط ریچارد فاینمن (R.Feynnman) ، برنده جایزه نوبل فیزیک مطرح شد. فاینمن طی یک سخنرانی در انستیتو تکنولوژی کالیفرنیا در سال 1959 اشاره کرد که اصول و مبانی فیزیک امکان ساخت اتم به اتم چیزها را رد نمی‌کند. وی اظهار داشت که می‌توان با استفاده از ماشینهای کوچک ماشینهایی به مراتب کوچکتر ساخت و سپس این کاهش ابعاد را تا سطح خود اتم ادامه داد.

    همین عبارتهای افسانه وار فاینمن راهگشای یکی از جذابترین زمینه‌های نانو تکنولوژی یعنی ساخت روباتهایی در مقیاس نانو شد. در واقع تصور در اختیار داشتن لشکری از نانو ماشینهایی در ابعاد میکروب که هر کدام تحت فرمان یک پردازنده مرکزی هستند، هر دانشمندی را به وجد می‌آورد. در رویای دانشمندانی مثل جی استورس هال (J.Storrs Hall) و اریک درکسلر (E.Drexler) این روباتها یا ماشینهای مونتاژکن کوچک تحت فرمان پردازنده مرکزی به هر شکل دلخواهی در می‌آیند. شاید در آینده‌ای نه چندان دور بتوانید به کمک اجرای برنامه ای در کامپیوتر ، تخت خوابتان را تبدیل به اتومبیل کنید و با آن به محل کارتان بروید.



    تصویر



    چرا این مقیاس طول اینقدر مهم است؟

    خواص موجی شکل (مکانیک کوانتومی) الکترونهای داخل ماده و اثر متقابل اتمها با یکدیگر از جابجایی مواد در مقیاس نانومتر اثر می‌پذیرند. با تولید ساختارهایی در مقیاس نانومتر ، امکان کنترل خواص ذاتی مواد ازجمله دمای ذوب ، خواص مغناطیسیظرفیت بار و حتی رنگ مواد بدون تغییر در ترکیب شیمیایی بوجود می‌آید. استفاده از این پتانسیل به محصولات و تکنولوژیهای جدیدی با کارآیی بالا منتهی می‌شود که پیش از این میسر نبود.

    نظام سیستماتیک ماده در مقیاس نانومتری ، کلیدی برای سیستمهای بیولوژیکی است. نانوتکنولوژی به ما اجازه می‌دهد تا اجزاء و ترکیبات را داخل سلولها قرار داده و مواد جدیدی را با استفاده از روشهای جدید خود_اسمبلی بسازیم. در روش خود_اسمبلی به هیچ روبات یا ابزار دیگری برای سرهم کردن اجزاء نیازی نیست. این ترکیب پر قدرت علم مواد و بیوتکنولوژی به فرآیندها و صنایع جدیدی منتهی خواهد شد.

    ساختارهایی در مقیاس نانو مانند نانو ذرات و نانولایه‌ها دارای نسبت سطح به حجم بالایی هستند که آنها را برای استفاده در مواد کامپوزیت ، واکنشهای شیمیایی ، تهیه دارو و ذخیره انرژی ایده‌ال می‌سازد. سرامیکهای نانوساختاری غالبا سخت‌تر و غیرشکننده‌تر از مشابه مقیاس میکرونی خود هستند. کاتالیزورهای مقیاس نانو راندمان واکنشهای شیمیایی و احتراق را افزایش داده و به میزان چشمگیری از مواد زائد و آلودگی آن کم می‌کنند. وسایل الکترونیکی جدید ، مدارهای کوچکتر و سریعتر و … با مصرف خیلی کمتر می‌توانند با کنترل واکنشها در نانوساختار بطور همزمان بدست آیند. اینها تنها اندکی از فواید و مزایای تهیه مواد در مقیاس نانومتر است.
    ،


    تصویر



    منافع نانوتکنولوژی چیست؟

    مفهوم جدید نانوتکنولوژی آنقدر گسترده و ناشناخته است که ممکن است روی علم و تکنولوژی در مسیرهای غیرقابل پیش بینی تأثیر بگذارد. محصولات موجود نانوتکنولوژی عبارتند از: لاستیکهای مقاوم در برابر سایش که از ترکیب ذرات خاک رس با پلیمرها بدست آمده‌اند، شیشه‌هایی که خودبه خود تمیز می‌شوند، مواد دارویی که در مقیاس نانو ذرات درست شده‌اند، ذرات مغناطیسی باهوش برای پمپهای مکنده و روان سازها ، هد دیسکهای لیزری و مغناطیسی که با کنترل دقیق ضخامت لایه‌ها از کیفیت بالاتری برخوردارند، چاپگرهای عالی با استفاده از نانو ذرات با بهترین خواص جوهر و رنگ دانه و ... .

    قابلیتهای محتمل تکنیکی نانوتکنولوژی

    1. محصولات خود_اسمبل
    2. کامپیوترهایی با سرعت میلیاردها برابر کامپیوترهای امروزی
    3. اختراعات بسیار جدید (که امروزه ناممکن است)
    4. سفرهای فضایی امن و مقرون به صرفه
    5. نانوتکنولوژی پزشکی که در واقع باعث ختم تقریبی بیماریها ، سالخوردگی و مرگ و میر خواهد شد.
    6. دستیابی به تحصیلات عالی برای همه بچه‌های دنیا
    7. احیاء و سازماندهی اراضی

    برخی کاربردها



    تصویر




    مدلسازی مولکولی و نانوتکنولوژی

    در سازمان ­دهی و دستکاری مواد در مقیاس نانو ، لازم است تمامی ابزار موجود جهت افزایش کارایی مواد و وسایل بکار گرفته شود. یکی از این ابزار ، شیمی تحلیلی ، خصوصا مدل ‌سازی مولکولی و شبیه ‌سازی است. امروزه ابزار تحقیقاتی فراگیری مانند روشهای شیمی تحلیلی مزیتهای فراوانی نسبت به روشهای تجربی دارند. میهیل یورکاز شرکتContinental Tire North America می‌گوید:"روشهای تجربی مستلزم بهره‌گیری از نیروی انسانی ، شیمیایی ، تجهیزات ، انرژی و زمان است. شیمی تحلیلی این امکان را برای هر فرد مهیا می‌سازد که فعالیتهای شیمیایی چندگانه‌ای را در 24 ساعت شبانه ‌روز انجام دهد. شیمیدانها می‌توانند با انجام آزمایشها توسط رایانه ‌، احتمال فعالیتهای غیرمؤثر را از بین ببرند و گستره احتمالی موفقیتهای آزمایشگاهی را وسعت دهند.

    نتیجه نهایی این امر ، کاهش اساسی در هزینه‌های آزمایشگاهی (مانند مواد ، انرژی ، تجهیزات) و زمان است." از طرف دیگر ، در شیمی تحلیلی سرمایه‌ گذاری اولیه جهت تهیه نرم‌افزار و هزینه‌های وابسته از جمله سخت‌افزار جدید ، آموزش و تغییرات پرسنل بسیار بالا خواهد بود. ولی با بکار گیری هوشمندانه این ابزار می‌توان هریک از هزینه‌های اولیه را نه تنها از طریق صرفه‌جویی در هزینه آزمایشگاه بلکه بوسیله فراهم نمودن دانشی که منجر به بهینه ‌سازی فرآیندها و عملکردها می‌شود، جبران ساخت.

    این موضوع برای شیمیدانها بسیار مناسب است، ولی روشهای شبیه‌سازی چطور می‌توانند برای نانوتکنولوژیستها مفید واقع شود؟ محدودیتهای آزمایشگر در مقیاس نانو ، زمانی آشکار می‌شود که شگفتی جهان دانشمندان نظری وارد عمل می‌شود. در اینجا هنگامی که دانشمندان قصد قرار دادن هر یک از اتمها را در محل مورد نظر دارند قوانین کوانتوم وارد صحنه می‌شود. پیش‌بینی رفتار و خواص در محدوده­ای از ابعاد برای نانوتکنولوژیستها حیاتی است.

    مدل‌سازی رایانه‌ای با بکارگیری قوانین اولیه مکانیک کوانتوم و یا شبیه‌سازیهای مقیاس میانی ، دانشمندان را به مشاهده و پیش‌بینی رفتار در مقیاس نانو و یا حدود آن قادر می‌سازد. مدلهای مقیاس میانی با بکارگیری واحدهای اصلی بزرگتر از مدلهای مولکولی که نیازمند جزئیات اتمی است، به ارائه خواص جامدات ، مایعات و گازها می­پردازند. روشهای مقیاس میانی در مقیاسهای طولی و زمانی بزرگتری نسبت به شبیه­سازی مولکولی عمل می‌کنند. می‌توان این روشها را برای مطالعه مایعات پیچیده ، مخلوطهای پلیمر و مواد ساخته‌شده در مقیاس نانو و میکرو بکار برد.



    تصویر

    مدل ‌سازی خاک‌ رس

    محققین دانشگاه لندن در انگلستان و دانشگاه Paris Sud در فرانسه ، شبیه‌سازیهایی بر اساس مکانیک کوانتوم برای مطالعه و کامپوزیتهای خاک ‌رس–پلیمر بکار برده‌اند. امروزه این ترکیبات یکی از موفق‌ترین مواد نانوتکنولوژی هستند، زیرا بطور همزمان مقاومت بالا و شکل‌پذیری از خود نشان می‌دهند؛ خواصی که معمولاً در یکجا جمع نمی‌شوند. نانو کامپوزیتهای پلیمر–خاک رس می‌توانند با پلیمریزاسیون در جا تهیه شوند؛ فرآیندی که شامل مخلوط کردن مکانیکی خاک معدنی با مونومر مورد نیاز است. بنابراین مونومر در لایه درونی جای‌گذاری می‌شود (خودش را در لایه‌های درون ورقه‌های سفال جای می‌دهد) و تورق کل ساختار را افزایش می‌دهد. پلیمریزاسیون ادامه می‌یابد تا سبب پیدایش مواد پلیمری خطی و همبسته گردد.


    تصویر




    دانشمندان با بکارگیری Castep (یک برنامه مکانیک کوانتوم که نظریه کارکردی چگالی را بکار می‌گیرد) تحول کشف شده در این روش را که پلیمریزاسیون میان ‌گذار خود کاتالیست نامیده می‌شود مطالعه کردند. این پروژه ، دانشی نظری در زمینه ساز و کار این فرآیند جدید را بوسیله مشخص کردن نقش سفال در کامپوزیت فراهم نمود. ضروری است که دانش حاصل از شبیه‌سازیها ، جهت کنترل و مهندسی نمودن فعل و انفعالات پلیمر-سیلیکات به کمک دانشمندان آید.

    دانشمندان در شرکت BASF شبیه‌ سازیهای مقیاس میانی را برای بررسی علم و رفتار ریزواره‌ها بکاربردند. ریزواره‌ها ذراتی کروی شکل با ابعاد نانو هستند که به صورت خود به خود در محلولهای کوپلیمری ایجاد می‌شوند و در زمینه‌هایی مانند سنسورها وسایل آرایشی و دارو رسانی کاربرد دارند. دانشمندانBASF با بکار گیری esoDyn ، یک ابزار شبیه ‌سازی برای پیش‌بینی ساختارهای مقیاس میانی مواد متراکم محلولهای تغلیظ ‌شده کوپلیمرهای آمفی‌فیلیک را بررسی کردند.

    شبیه‌سازیها مشخص نمود که کدام شرایط مولکولی و فرمولی به شکل‌گیری "ریزواره‌های معکوس" مانند نانو ذرات آب در یک محیط فعال منتهی‌ می­شود. چنین نتایجی برای درک رفتار عوامل فعال سطحی ضروری هستند. به کمک روشهایی مانند پرتاب محلول در آزمایشگاه می‌توان به نتایجی در این زمینه دست یافت، اما دستیابی به این نتایج ماهها به طول می‌انجامد، درحالی که آزمایشهای شبیه‌سازی شده تنها طی چند روز نتیجه می‌دهند.
    محدودیتهای این روشها چیست؟


    در حالیکه امروزه ابزار مدلسازی در سطح کوانتومی و مقیاس میانی به خوبی توسعه یافته‌اند، همچنان محدودیتهایی در این عرصه وجود دارد. برای مثال کاربردهایی در زمینه وسایل الکترونیک مستلزم انجام محاسبات مکانیک کوانتوم برای تعداد اتمهایی بیش از روشهای حاضر می‌باشد که بیش از توان عملیاتی منابع محاسبه‌گر فعلی است. همچنین مدلسازی کل وسایل امکان‌پذیر نیست، بویژه عملکردها و خواص آنها.
    + نوشته شده در  پنجشنبه بیست و نهم اردیبهشت 1390ساعت 10:53  توسط محمد جواد زراعت شعار  | 

    فناوری نانو

    فناوری نانو

     

    ‎C60‏ که از جستارهای مهم پژوهش‌های وابسته به فناوری نانو است.

    فناوری نانو یا نانوتکنولوژی رشته‌ای از دانش کاربردی و فناوری است که جستارهای گسترده‌ای را پوشش می‌دهد. موضوع اصلی آن نیز مهار ماده یا دستگاه‌های در ابعاد کمتر از یک میکرومتر، معمولاً حدود ۱ تا ۱۰۰ نانو متر است. در واقع نانو تکنولوژی فهم و به کارگیری خواص جدیدی از مواد و سیستمهایی در این ابعاد است که اثرات فیزیکی جدیدی - عمدتا متاثر از غلبه خواص کوانتومی بر خواص کلاسیک - از خود نشان می‌دهند. نانوفناوری یک دانش به شدت میان‌رشته‌ای است و به رشته‌هایی چون پزشکی، دامپزشکی، زیست شناسی، فیزیک کاربردی، مهندسی مواد، ابزارهای نیم رسانا، شیمی ابرمولکول و حتی مهندسی مکانیک، مهندسی برق و مهندسی شیمی نیز مربوط می‌شود. نانو تکنولوژی می‌تواند به عنوان ادامهٔ دانش کنونی به ابعاد نانو یا طرح‌ریزی دانش کنونی بر پایه‌هایی جدیدتر و امروزی‌تر باشد.

    محتویات

    تعریف استاندارد

    1. به طراحی، تعیین ویژگی ها، تولید و کاربرد مواد، ابزار آلات و سیستم‌ها با کنترل شکل و اندازه در مقیاس نانو می گویند.[۱]
    2. به دستکاری کنترل شده، جاگیری دقیق، اندازه گیری، مدلسازی و تولید مواد در مقیاس نانو می گویند و هدف آن تولید مواد، ابزار و سیستم هایی با ویژگی‌های بنیادی و عملکردهای جدید می باشد.[۱]

    اصول بنیادی

    یک نانومتر (nm) یک میلیاردیم متر است. برای سنجش طول پیوندهای کربن-کربن، یا فاصلهٔ میان دو اتم بازهٔ ۱۲ تا ۱۵ نانومتر به کار می‌رود؛ همچنین طول یک جفتِ دی‌ان‌آ نزدیک به ۲ نانومتراست. و از سوی دیگر کوچک‌ترین باکتری سلول‌دار ۲۰۰ نانومتر است. اگر بخواهیم برای دریافتن مفهوم اندازهٔ یک نانومتر نسبت به متر سنجشی انجام دهیم می‌توانیم اندازهٔ آن را مانند اندازهٔ یک تیله به کرهٔ زمین بدانیم.[۲]. یا به شکلی دیگر یک نانومتر اندازهٔ رشد ریش یک انسان در طول زمانی است که برای بلند کردن تیغ از صورتش باید بگذرد.[۳]

    شاخه‌های اصلی در نانو

    می‌توان موردهای زیر را شاخه‌های بنیادین دانش نانوفناوری دانست:

    ((کاربردهای نانو)) فناوری نانو کاربردهای گسترده‌ای در دانش‌های گوناگون دارد که از موردهای مهم آن می‌توان به کاربردهایش در پزشکی برای ساخت داروهای بدون اثرهای جانبی اشاره کرد که تنها بر یک بافت ویژه تأثیر می‌گذارند. از انواع کاربردها می‌توان در ساخت نانو جوراب‌ها، نانو لوله‌های کربنی، داروسازی هوشمند و ... اشاره کرد.

    جستارهای وابسته

    منابع

    1. ۱٫۰ ۱٫۱ دیکشنری نانو
    2. Jennifer Kahn (۲۰۰۶). "Nanotechnology". National Geographic ۲۰۰۶ (June): ۹۸-۱۱۹
    3. Jennifer Kahn (۲۰۰۶). "Nanotechnology". National Geographic ۲۰۰۶ (June): ۹۸-۱۱۹.
    1. ویکی‌پدیای انگلیسی (دسترسی در ۲۱ ژوئیه ۲۰۰۷)
    + نوشته شده در  یکشنبه هجدهم اردیبهشت 1390ساعت 8:46  توسط محمد جواد زراعت شعار  | 

    رآکتور هسته‌ای

    تاریخچه

    اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر ۱۹۴۲ بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.


    ساختمان راکتور

    با وجود تنوع در راکتورها، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوخت، پوشش برای سوخت، کند کننده نوترونهای حاصله از شکافت، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می‌باشد.

    سوخت هسته‌ای

    سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار می‌روند. ۲۳۲Th ، ۲۳۳U ، ۲۳۵U ، ۲۳۸U ، ۲۳۹Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است. در کنار قابلیت شکافت، سوخت بکار رفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن، ساخت راحت، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.

    غلاف سوخت راکتور

    سوختهای هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می‌گیرند. پوشش یا غلاف سوخت، کند کننده و یا خنک کننده از آن جدا می‌سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می‌تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.

    مواد کند کننده نوترون

    یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن، دوتریم، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن، به شکل آب و آب سنگین و کربن، به شکل گرافیت به عنوان مواد کند کننده استفاده می‌شوند.

    آب سنگین در بعضی از انواع رآکتورهای هسته‌ای نیز به عنوان کند کننده نوترون به کار می‌رود. نوترون‌های کند می‌توانند با اورانیوم واکنش بدهند.از آب سبک یا آب معمولی هم می‌توان به عنوان کند کننده استفاده کرد، اما از آنجایی که آب سبک نوترون‌های حرارتی را هم جذب می‌کنند، رآکتورهای آب سبک باید اورانیوم غنی شده اورانیوم با خلوص زیاد استفاده کنند، اما رآکتور آب سنگین می‌تواند از اورانیوم معمولی یا غنی نشده هم استفاده کند، به همین دلیل تولید آب سنگین به بحث‌های مربوط به جلوگیری از توسعه سلاح‌های هسته‌ای مربوط است. رآکتورهای تولید آب سنگین را می‌توان به گونه‌ای ساخت که بدون نیاز به تجهیزات غنی سازی، اورانیوم را به پلوتونیوم قابل استفاده در بمب اتمی تبدیل کند. البته برای استفاده از اورانیوم معمولی در بمب اتمی می‌توان از روش‌های دیگری هم استفاده کرد. کشورهای هند، اسرائیل، پاکستان، کره شمالی، روسیه و آمریکا از رآکتورهای تولید آب سنگین برای تولید بمب اتمی استفاده کردند.با توجه به امکان استفاده از آب سنگین در ساخت سلاح هسته‌ای، در بسیاری از کشورها دولت تولید یا خرید و فروش مقدار زیاد این ماده را کنترل می‌کند. اما در کشورهایی مثل آمریکا و کانادا می‌توان مقدار غیر صنعتی یعنی در حد گرم و کیلوگرم را بدون هیچ گونه مجوز خاصی از تولید کنندگان یا عرضه کنندگان مواد شیمیایی تهیه کرد. هم اکنون قیمت هر کیلوگرم آب سنگین با خلوص ۹۸۹۹ درصد حدود ۶۰۰ تا ۷۰۰ دلار است. گفتنی است بدون استفاده از اورانیوم غنی شده و آب سنگین هم می‌توان رآکتور تولید پلوتونیوم ساخت. کافی است که از کربن فوق العاده خالص به عنوان کند کننده استفاده شود از آنجایی که نازی‌ها از کربن ناخالص استفاده می‌کردند، متوجه این نکته نشدند در حقیقت از اولین رآکتور اتمی آزمایشی آمریکا سال ۱۹۴۲ و پروژه منهتن که پلوتونیوم آزمایش ترینیتی و بمب مشهور «FAT MAN» را ساخت، از اورانیوم غنی شده یا آب سنگین استفاده نمی‌شد.

    خنک کننده‌ها

    Pulstar2.jpg

    گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایین‌تر از نوترون دو خاصیت عمده ماده خنک کننده‌است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

    از مایعات و گازها به عنوان خنک کننده استفاده شده‌است، مانند گازهای دی اکسید کربن و هلیوم. هلیوم ایده‌آل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.

    مواد کنترل کننده شکافت

    برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.

    انواع راکتورها

    دوگروه اصلی راکتورهای هسته‌ای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می‌گیرند.

    بر حسب نوع فرآیند شکافت، راکتورها به اقسام حرارتی، ریع و میانی (واسطه)، و بر حسب مصرف سوخت به راکتورهای سوزاننده، مبدل و زاینده، و بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی، راکتورهای اورانیوم غنی شده با ۲۳۵U (راکتور مخلوطی Be)، و نیز بر حسب خنک کننده به راکتورهای گاز (CO۲مایع (آب، فلز)، و بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.

    راکتورهای آب سنگین و آب سبک

    نوشتار اصلی: راکتور آب سبک

    راکتورهای آب سبک با آب معمولی کار می‌کنند هیدورژن آب معمولی از یک پروتون تشکیل شده‌است اما در هیدروژن آب سنگین یک پروتون و یک نوترون وجود دارد برای راکتورهای آب سبک به اورانیوم غنی‌شده نیاز داریم اما در راکتور آب سنگین از اورانیوم معمولی می‌شود استفاده کرد به این ترتیب در عمل استفاده از راکتور آب سنگین نتیجه‌ای شبیه به غنی‌سازی اورانیوم خواهد داشت.

    کاربردهای راکتورهای هسته‌ای

    راکتورها انواع مختلف دارند برخی از آنها در تحقیقات، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار می‌روند.

    ----------

    ----------------------

    -------------------------------------

    مفاهیم: راکتور هسته‌ای چیست؟

    اقتصاد > انرژی  - همشهری آنلاین:
    راکتور هسته‌ای وسیله ایست که در آن فرایند شکافت هسته‌ای بصورت کنترل شده انجام می‌گیرد

    انرژی حرارتی بدست آمده از این طریق را می‌توان برای بخار کردن آب و به گردش درآوردن توربین‌های بخار ژنراتورهای الکتریکی مورد استفاده قرار داد.

    اورانیوم غنی شده، معمولا به صورت قرص‌هائی که سطح مقطعشان به اندازه یک سکه معمولی و ضخامتشان در حدود دو و نیم سانتیمتر است در راکتورها به مصرف می‌رسند.

    این قرص‌ها روی هم قرار داده شده و میله‌هایی را تشکیل می‌دهند که به میله سوخت موسوم است.

    میله‌های سوخت سپس در بسته‌های چندتائی دسته بندی شده و تحت فشار و در محیطی عایقبندی شده نگهداری می‌شوند.

    در بسیاری از نیروگاه‌های هسته‌ای برای جلوگیری از گرم شدن بسته‌های سوخت در داخل راکتور، این بسته‌ها را داخل آب سرد فرو می‌برند.

    در نیروگاه‌های دیگر برای خنک نگه داشتن هسته راکتور، یعنی جائی که فرایند شکافت هسته‌ای در آن رخ می‌دهد، از فلز مایع (سدیم) یا گاز دی اکسید کربن استفاده می‌شود.

    برای تولید انرژی گرمائی از طریق فرایند شکافت هسته‌ای، اورانیومی که در هسته راکتور قرار داده می‌شود باید از جرم بحرانی بیشتر (فوق بحرانی) باشد.

    یعنی اورانیوم مورد استفاده باید به حدی غنی شده باشد که امکان آغاز یک واکنش زنجیره‌ای مداوم وجود داشته باشد.

    برای تنظیم و کنترل فرایند شکافت هسته‌ای در یک راکتور از میله‌های کنترلی که معمولا از جنس کادمیوم است استفاده می‌شود.

    این میله‌ها با جذب نوترون‌های آزاد در داخل راکتور از تسریع واکنش‌های زنجیره‌ای جلوگیری می‌کند.

    زیرا با کاهش تعداد نوترون‌ها، تعداد واکنش‌های زنجیره‌ای نیز کاهش می‌یابد. حدوداً ۴۰۰ نیروگاه هسته‌ای در سرتاسر جهان فعال هستند که تقریبا ۱۷ درصد کل برق مصرفی در جهان را تامین می‌کنند.

    از جمله کاربردهای دیگر راکتورهای هسته‌ای، تولید نیروی محرکه لازم برای جابجایی ناوها و زیردریایی های اتمی است.

     

    -----------------

    ------------------------------

    --------------------------------------------

    دید کلی

    راکتورهای هسته‌ای دستگاه‌هایی هستند که در آنها شکافت هسته‌ای کنترل شده رخ می‌دهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترون‌ها بکار می‌روند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و به دنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته می‌شود.

    تاریخچه

    اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر 1942 بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی ، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای ، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.



    img/daneshnameh_up/3/32/reactor_1.jpg

    ساختمان راکتور

    با وجود تنوع در راکتور‌ها ، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوخت ، پوشش برای سوخت ، کند کننده نوترونهای حاصله از شکافت ، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می‌باشد.

    سوخت هسته‌ای

    سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار می‌روند. 232Th ، 233U ، 235U ، 238U ، 239Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است.

    در کنار قابلیت شکافت ، سوخت بکار رفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد.
    هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.



    img/daneshnameh_up/7/70/reactor_2.jpg

    غلاف سوخت راکتور

    سوختهای هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می‌گیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا می‌سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می‌تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.

    مواد کند کننده نوترون

    یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن ، دوتریم ، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت به عنوان مواد کند کننده استفاده می‌شوند.

    خنک کننده‌ها

    گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایین‌تر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

    از مایعات و گازها به عنوان خنک کننده استفاده شده‌ است، مانند گازهای
    دی اکسید کربن و هلیوم. هلیوم ایده‌آل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.



    img/daneshnameh_up/8/8a/z223.jpg

    مواد کنترل کننده شکافت

    برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.

    انواع راکتورها

    راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده ، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با 235U (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO2مایع (آب ، فلز) ، بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.

    کاربردهای راکتورهای هسته‌ای

    • راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار می‌روند.

    • دوگروه اصلی راکتورهای هسته‌ای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه ، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می گیرند.
    + نوشته شده در  پنجشنبه پانزدهم اردیبهشت 1390ساعت 14:32  توسط محمد جواد زراعت شعار  | 

    مهندسی شیمی (2)



    تصویر

    دید کلی

    مهندسی شیمی ، رشته ای دانشگاهی است که البته دارای زیر شاخه‌های متفاوت در زمینه‌های مختلف علمی و صنعتی می‌باشد. تمامی این رشته‌ها ، در تکنولوژی امروز بشری نهادینه شده‌اند و نقش اساسی در اداره و پیشرفت صنعت کشورهای گوناگون دارند. با خواندن مقاله زیر که به بررسی شاخه‌های مختلف مهنسی شیمی پرداخته است، با این علوم ، آشنا می‌شویم.

    صنایع پالایش

    صنعت پالایش نفت ، صنعتی است که با آن ، از تفکیک و تصفیه نفت خام ، محصول متنوع و پرارزشی از قبیل گاز مایع ، سوخت اتومبیل و هواپیما ، سوخت موتورهای دیزل ، نفت سفید ، حلال های نفتی ، مواد اولیه صنایع پتروشیمی ، روغن موتور ، انواع گریس و روغن‌های روان‌کننده و دهها فراورده دیگر تولید می‌شود.

    با مقایسه ای ساده بین ارزش
    نفت خام و ارزش فراورده های حاصل از پالایش ، می‌توان به سودآوری عظیم این صنعت و نقش آن در اقتصاد کشور پی برد. چرا که پالایشگاه ، نفت خام را به طیف وسیعی از فراورده های پر ارزش نفتی تبدیل می‌کند. همچنین با توجه به وجود اندوخته هنگفت نفت در کشور و تاکید دولت بر جایگزینی صادرات فرآورده ها نفتی به جای صدور نفت خام و نیاز روز افزون کشور به فرآورده های نفتی ، اهمیت صنایع پالایش در کشور بیشتر روشن می‌شود.

    تصویر

    صنایع پتروشیمی

    بر حسب تعریف ، صنایع پتروشیمی به صنایعی اطلاق میشود که در آنها هیدروکربنهای موجود در نفت خام یا گاز طبیعی به محصولات شیمیایی تبدیل می‌گردند. امروزه پتروشیمی ، صنعتی بسیار گسترده و با فن شناسی پیچیده و فراورده های متنوع می‌باشد و در حال حاضر ، شماره محصولات پتروشیمی به هزارها می‌رسد.

    از جمله این محصولات که همگی از مواد اولیه هدروکربنی و طی یک رشته عملیات فیزیک- شیمیایی بدست می‌آیند، می‌توان انواع
    کودهای شیمیایی ، برخی از اسیدها ، بازها و نمک ها ، منومرها و پلیمرها ، ترکیبات آروماتیک و مواد واسطه و بسیاری از صنایع شیمیایی دیگر را نام برد. اهمیت محصولات پتروشیمی کاملا روشن است. فقط کافی است توجه شود که تولید محصولات کشاورزی ، تولید پارچه وپوشاک ، ساخت مسکن ، تولید مواد شوینده و پاک کننده و تولید داروهای مختلف بدون استفاده از محصولات پتروشیمی ، هرگز کفاف نیازهای رو به افزایش جمعیت جهان را نخواهد داد و مطمئنا بدون آنها زندگی بشر در ابعاد گوناگون ، به‌کلی مختل خواهد شد.

    صنایع پتروشیمی از جمله صنایع مادر تلقی می‌شود و توسعه اقتصادی کشور را در زمینه‌های مختلف صنعتی و کشاورزی فراهم می‌آورد. با توجه به اینکه گسترش این صنایع و کاهش واردات و افزایش صدور محصولات پتروشیمی مورد تاکید دولت است، اهمیت این رشته آشکار می‌شود.

    صنایع پلیمر

    پلیمرها موادی هستند که بیشتر مردم ، آنها را با نام عمومی لاستیک‌ها و پلاستیک‌ها می‌شناسند، در حالی که که این‌ها تنها بخش کوچکی از طیف وسیع مواد پلیمری هستند. امروزه پلیمرها در همه جا کاربرد پیدا کرده‌اند. صنایع نظامی ، الکترونیک ، خودروسازی ، پزشکی ، ساختمان سازی و... تنها نمونه‌هایی از کاربرد در زندگی روزمره بشر می‌باشند.

    اهمیت کاربرد پلیمرها در صنایع گوناگون به حدی است که در حال حاضر علوم پلیمر ، نه‌تنها به‌عنوان گرایشی از مهندسی شیمی ، بلکه به‌عنوان شاخه ای مستقل از علوم فنی و مهندسی مطرح شده‌اند. پلیمرها کاربرد وسیعی در صنایع مختلف کشور دارند.

    صنایع گاز

    گاز طبیعی که از منبع گاز زیرزمینی کشور استخراج می‌شود، به‌صورت ماده ای خام ، چه به‌عنوان سوخت و یا به‌عنوان ماده اولیه برای دیگر صنایع (از جمله صنایع پتروشیمی) قابل استفاده نیست و باید تحت عملیات پالایش گاز ، معیان گاز ، انتقال و توزیع گاز طبیعی و گاز مایع باشد. اهمیت این رشته ، با توجه به وجود ذخایر عظیم گاز طبیعی در کشور و تاکید دولت بر توسعه صنایع گاز طبیعی به‌عنوان سوخت و منبع انرژی و استفاده از آن در صنایع مختلف نظیر نیروگاههای حرارتی تولید برق ، کارخانه های تولید سیمان ، صنایع ذوب آهن و نیز طرح گاز سوز کردن اتومبیل‌ها برای کاهش آلودگی هوا به‌خوبی محسوس است.

    تصویر

     

    صنایع شیمیایی معدنی

    صنایع شیمیایی معدنی ، دسته ای از صنایع تولیدی هستند که از برخی مواد شیمیایی معدنی یا سنگهای استخراج شده از معدن‌ها به‌عنوان ماده اولیه استفاده می‌کنند. صنایع شیشه ، کاشی و سرامیک ، گچ ، آهک ، سیمان ، باتری‌سازی ، تولید مواد شیمیایی معدنی (اسیدها ، بازها ، نمک‌ها) ، ساخت رنگدانه‌ها ، گازهای صنعتی (مانند کلر) و ترکیبات کلردار معدنی (نظیر مواد رنگ‌بر) ، نمونه‌هایی از صنایع شیمیایی معدنی می‌باشند.

    ضرورت و اهمیت این گرایش با توجه به وجود ذخایر عظیم مواد معدنی در کشور ، لزوم قطع وابستگی به محصولات شیمیایی وارداتی ، میل به خودکفایی در این صنایع و نیاز روز افزون کشور به محصولات شیمایی معدنی ، بخصوص صنایع شیمیایی ، قابل درک است.

    صنایع غذایی

    همانطوری که از نام این صنایع بر می‌آید، صنایع غذایی به صنایعی اطلاق می‌شود که در زمینه تولید انبوه مواد و محصولات غذایی مورد نیاز بشر فعالیت می‌کند. از میان این صنایع ، می‌توان به صنایع روغن نباتی ، قند و شکر ، شیر و لبنیات پاستوریزه ، کنسرو و خوشاب‌سازی ، تولید چای ، نوشابه‌سازی ، بیسکویت و شکلات سازی ، تولید مارکاونی و نیز صنایع تخمیری نظیر سرکه‌سازی اشاره کرد.

    شاید این مساله که گرایش صنایع غذایی در زمینه مهندسی شیمی مطرح می‌شود، کمی دور از ذهن به نظر برسد. ولی باید دانست که در کارخانه‌های صنایع غذایی بیشتر از همان عملیات و تجهیزاتی استفاده می‌شود که در دیگر صنایع شیمیایی بکار می‌روند.
    + نوشته شده در  پنجشنبه پانزدهم اردیبهشت 1390ساعت 14:23  توسط محمد جواد زراعت شعار  | 

    صنایع پتروشیمی

    دید کلی

    صنایع پتروشیمی(Petrochemical industry) ، بخشی از صنایع شیمیایی است که فرآورده‌های شیمیایی را از مواد خام حاصل از نفت یا گاز طبیعی تولید می‌کند. تا پیش از وارد شدن نفت به مفهوم امروزی در زندگی انسان ، مواد شیمیایی مورد نیاز ، بر اثر تغییر و تبدیل صنایع گیاهی و حیوانی بدست می‌آمد. اما در اوایل قرن بیستم نفت خام و گاز طبیعی به عنوان ماده اولیه برای تهیه بسیاری از ترکیبات مورد نیاز انسان ، اهمیت حیاتی و روز افزونی پیدا کرده است.

    img/daneshnameh_up/4/43/p-palayesh.jpg

    تاریخچه

    اقوام متمدن دوران باستان ، بویژه سومری‌ها و آشوری‌ها و بابلی‌ها ، در حدود چهار هزار و پانصد سال پیش در سرزمین بین‌النهرین (محل عراق کنونی) با برخی از مواد نفتی که در دریاچه قیر بدست می‌آمد، آشنایی داشتند. آنان از خود قیر به عنوان ماده غیر قابل نفوذ ، استفاده می‌کردند. رومی‌ها و یونانی‌ها نیز مواد قیری را برای غیر قابل نفوذ کردن بدنه کشتیها بکار می‌بردند. همچنین برای روشنایی و گرم کردن نیز از آن بهره می‌جستند.

    با توسعه و پیشرفت تکنولوژی
    حفاری در اواسط قرن نوزدهم و تکنولوژی تقطیر و پالایش نفت در اواخر قرن نوزدهم و استفاده از آن در موارد غیر سوختی ، جهش حیرت‌آوری بوجود آمد. بطوری که امروزه صنایع پتروشیمی نفش اساسی و بنیادی در رفع نیاز عمومی جامعه به عهده دارد.

    صنایع گوناگون پتروشیمی

    نفت و مشتقات آن نه تنها در برآوردن نیازهای انسان در زمینه سوخت ، انرژی و الیاف نقشی بنیادی دارد، بلکه پیدایش و تکامل صنایع گوناگون مهمی را موجب شد که به پاره‌ای از آنها اشاره می‌شود.


    • همزمان با پالایش نفت خام ، کاربرد موتورهای درون سوز جنبه عمومی به خود گرفت و میلیونها ماشین بنزین سوز به بازار عرضه شد.

    • امروزه فرآورده‌های نفتی علاوه بر مصرف در زمینه سوخت وسایل نقلیه ، روغن موتور و غیره ، در تهیه بسیاری از قطعات مورد نیاز ساخت وسایط نقلیه ، نقش ارزنده‌ای دارد و تلاش بر این است تا بدنه اتومبیل را از مواد پلاستیکی که آنها را ازپلیمریزاسیون ترکیبات نفتی می‌توان بدست آورد، بسازند.

    • فرآورده‌های نفتی در تهیه سوخت موشکهای هدایت کننده سفینه‌های فضایی و ماهواره‌ها و حتی در ساخت بسیاری از قطعات داخلی آنها کاربرد اساسی دارد.

    • ماده اولیه بیشتر داروها و حتی آنتی‌بیوتیکها از ترکیبات نفتی مشتق می‌شود. بویژه تقریبا تمام مواد پاک کننده ، باکتری کشها و غیره ، از مشتقات نفتی و محصولات پتروشیمی می‌باشد.

    تصویر
    مولکول C60

    ترکیبات نفت خام و فراورده‌های نفتی

    اتمهای کربن و هیدروژن بطور حیرت آوری می‌توانند ضمن ترکیب شدن با یکدیگر ، تعداد فوق‌العاده‌ زیادی از ترکیبات هیدروکربنی زنجیری و حلقوی آروماتیکی را بوجود آورند، بطوری که تا کنون هیدروکربنی که در ساختار مولکولی آن 60 اتم کربن شرکت داشته باشد، ردیابی شده است. از طرفی با افزایش تعداد اتمهای کربن بر تعداد ایزومرهای هیدروکربنی نیز افزوده می‌شود.

    بطور مثال هیدروکربنی که 30 اتم کربن داشته باشد، می‌تواند بیش از چهار میلیارد ترکیب هیدروکربنی ایزومر تشکیل دهد. علاوه بر این ، با توجه به اینکه در
    نفت خام ، ترکیبات هیدروکربنی سیر شده نیز فراوانند، تعداد ترکیبهای موجود در آن ، فوق‌العاده زیاد و گوناگون است. این گوناگونی با شرکت اتمهای دیگر مانند گوگرد ، نیتروژن و اکسیژن در زنجیر هیدروکربنها به مراتب بیشتر می‌شود.

    ترکیبات عمده موجود در نفت خام

    ترکیبات عمده موجود در نفت خام عبارتند از:هیدروکربنهای سیر شده زنجیری به فرمول کلی CnH2n+2، هیدروکربنهای سیر شده حلقوی به فرمول عمومی CnH2n که اصطلاحا آنرا نفتن گویند و هیدروکربنهای سیرنشده زنجیری اتیلن و استیلن. هرچه درصد تشکیل دهنده‌های نفت در دماهای پایین بیشتر باشد، مرغوبیت آن بیشتر است.

    گازهای طبیعی

    گازهای طبیعی ، بخش گازی شکل مواد نفتی است که همراه با نفت خام در مخازن زیرزمینی وجود دارد و یا از تقطیر نفت خام در پایین‌تر از 200C بدست می‌آید. گازهای طبیعی ، مخلوطی طبیعی از گازهای متان ( قسمت عمده حدود 85 درصد ) پروپان ، بوتان ، منو اکسید کربن و هیدروژن (گاز سنتز) همراه با مقداری دوده است.

    مصرف عمده آن در کشورهای غیر صنعتی به عنوان یک ماده سوختی است. ولی در کشورهای صنعتی از آن در تهیه بسیاری از فرآورده‌های شیمیایی و صنعتی بسیار مفید و ضروری استفاده می‌کنند.

    تصویر

    محصولات صنایع پتروشیمی ایران

    محصولات عمده‌‌ای که توسط واحدهای صنایع پتروشیمی ایران تولید می‌شوند عمدتا عبارتند از:

    کودهای شیمیایی ، اوره ، فسفات دی‌آمونیم ، کودهای مخلوط نیترات آمونیم ، مواد اولیه پلاستیک ، پی ـ وی ـ سی و دی ـ او ـ پی ، مواد شیمیایی نظیر اسید سولفوریک ، اسید کلریدریک ، آمونیاک ، گوگرد ، دوده و ....

    با این حال ، این محصولات در مقایسه با دهها هزار مشتقی که از نفت و گازهای طبیعی به کمک تکنولوژی پیشرفته پتروشیمیایی بدست می‌آید، بسیار اندک بوده، نشان می‌دهد که باید همت و تلاش بیشتری در این زمینه باید بکار برد تا به واقعیت نزدیکتر شد.
    + نوشته شده در  پنجشنبه پانزدهم اردیبهشت 1390ساعت 14:14  توسط محمد جواد زراعت شعار  | 

    مهندسی شیمی (1)

    مقدمه :

    مهندسی شیمی علم کاربرد ریاضیات، شیمی، فیزیک و اقتصاد در فرآیند تبدیل مواد خام به مواد باارزش‌تر یا سودمندتر است. مهندسی شیمی را می توان بطور کلی علم استفاده از موازنه جرم، موازنه انرژی و موازنه اندازه حرکت برای طراحی و کنترل واحدهای فرآیندی شیمیایی از قبیل واحد های یک پالایشگاه پتروشیمی، صنایع چوب و کاغذ و غیره در نظر گرفت.

    مهندسی شیمی عمدتاً در طراحی و نگهداری فرآیندهای شیمیایی برای تولید انبوه به کار می‌رود. به این بخش از مهندسی شیمی، مهندسی فرآیند گفته می‌شود.

    فرآیندهای مجزایی که توسط یک مهنس شیمی به کار گرفته می‌شوند (مانند تقطیر، استخراج و ...)، عملیات واحد نام داشته و شامل واکنش شیمیایی، عملیات انتقال جرم، انتقال حرارت و انتقال اندازه حرکت هستند. این فرآیندها برای سنتز شیمیایی یا جداسازی شیمیایی با هم ترکیب می‌شوند.

    سه قانون فیزیکی اساسی در مهندسی شیمی، اصل بقای جرم، اصل بقای انرژی و اصل بقای اندازه حرکت هستند. انتقال ماده و انرژی در یک فرآیند شیمیایی با استفاده از موازنه جرم و انرژی برای کل واحد، عملیات واحد یا بخشی از آن ارزیابی می‌شود. مهندسین شیمی اصول ترمودینامیک، سینتیک واکنش و پدیده‌های انتقال را به کار می‌گیرند.

    مهندسی شیمی نوین، گستره‌ای فراتر از مهندسی فرآیند را در بر می‌گیرد. هدف اصلی مهندسی شیمی استفاده از دانش شیمی در خلق مواد و محصولات بهتر برای دنیای امروز است. امروزه مهندسین شیمی علاوه بر فرآیندهای تولید مواد اولیه پایه، بلکه در تو سعه و تولید محصولات باارزش و متنوع شرکت دارند. این محصولات شامل مواد ویژه و کارآمد برای صنایعی همچون هوافضا، خودروسازی، پزشکی، صنایع الکترونیک، کاربردهای محیط زیست و صنایع نظامی است. به عنوان مثال‌هایی از این محصولات می‌توان به الیاف، منسوجات و چسب‌های بسیار قوی، مواد زیست‌سازگار و داروهای جدید اشاره کرد. امروزه مهندسی شیمی ارتباطی تنگاتنگ با علوم زیست‌شناسی، مهندسی پزشکی و اغلب شاخه‌های مهندسی دارد.

    --------------------------------------------------------

    -----------------------------------------------------------------

    -----------------------------------------------------------------------------

    تاریخچه مهندسی شیمی :

    اوّلین درس در زمینه مهندسی شیمی نخستین بار توسط پروفسور «نورتون» در سال ۱۸۸۱ در دانشگاه MIT و در دانشکده مکانیک تدریس شد. نورتون شیمی صنعتی تدریس می کرد. در آن زمان صنایع شیمیایی رو به توسعه گذاشته بودند و لازم بود ساخت و بهره برداری از فرآیندهای شیمیایی توسّط افراد متخصّص صورت گیرد. در آن زمان طرّاحی و نظارت بر ساخت فرآیندهای شیمیایی و صنایع شیمیایی به دو شکل صورت می گرفت:

    ۱) به وسیله شیمی دان هایی که از تئوری‌های شیمیایی و علوم آزمایشگاهی آگاهی داشته، ولی اطّلاعات فنّی و تجارب کافی از طراحی صنعتی نداشتند.

    ۲) به وسیله مهندسان مکانیکی که تجربه طرّاحی صنعتی داشتند، ولی اطّلاعات کافی از فرآیندهای شیمیایی نداشتند.

    این موضوع باعث شد که تا مدّتی برای طرّاحی واحدهای شیمیایی از شیمیدانان و مهندسان مکانیک به صورت مشترک استفاده شود. امّا برای هماهنگ کردن کار این دو گروه، به افرادی نیاز بود که هم از فرآیندهای شیمیایی و هم از طرّاحی صنعتی مطّلع باشند و هم تجربه‌های آزمایشگاهی لازم را داشته باشند.از این رو رشته ای جدید در دانشگاه‌ها با نام «شیمی صنعتی» یا «صنایع شیمیایی» به وجود آمد. با تئسعه تدریجی صنایع شیکیایی، نیاز به چنین متخصّصانی که هم در زمینه طرّاحی صنعتی و هم در زمینه فرآیندهای شیمیایی تخصص داشتند، بیشتر احساس شد. به این ترتیب، دوره هایی با نام «مهندسی شیمی مدرن» در دانشگاه‌ها پایه گذاری شدند. توسعه صنایع شیمیایی باعث شد که دانشگاه‌ها اقدام به تأسیس دانشکده مهندسی شیمی به صورت مجزّا کرده و آن را جدا از رشته‌های شیمی و مکانیک تدریس کنند. [۳]

    مهندسی شیمی در ایران :
    مهندسی شیمی در ایران نخستین بار در «مدرسه صنعتی ایران و آلمان» تدریس شد. این مرکز آموزشی که پس از جنگ جهانی اول به عنوان غرامت جنگی به ایران واگذار شده بود، در هر کدام از رشته‌های مهندسی شیمی، برق و ماشین حدود بیست دانشجو می پذیرفت. دانش آموختگان مدرسه صنعتی ایران پس از یک دوره تحصیلی دو ساله «مهندس شیمی» نامیده می شدند. امّا در برنامه درسی آنها دروسی چون «شیمی تجزیه» و آزمایشگاه وجود داشت که دروس مربوط به رشته شیمی است. در سال 1313 «دانشگاه تهران» تأسیس شد و رشته مهندسی شیمی یکی از رشته‌های ارائه شده در دانشکده فنّی بود. در این میان، رقابت‌های ناسالم میان دانش آموختگان دانشکده فنّی و مدرسه صنعتی موجب شد تا مدرسه عالی صنعتی منحل شود. در سال 1336 «دانشگاه صنعتی امیرکبیر» (پلی تکنیک تهران) تأسیس شد و در رشته مهندسی شیمی و برای یک دوره چهار ساله به پذیرش دانشجو اقدام کرد. امّا برنامه درسی آن زمان دانشگاه تهران و پلی تکنیک هنوز با برنامه واقعی مهندسی شیمی تفاوت بسیار داشت. درس هایی مانند «انتقال حرارت»، «انتقال جرم» و «طراحی رآکتور» در سرفصل دروس گنجانده نشده بودند و از تنها درس های ویژه مهندسی شیمی «تقطیر»، «جذب» و «ترمودینامیک» را می توان نام برد. پس ازاین دو دانشگاه، «دانشگاه شیراز» و پس از آن در سال 1345 «دانشگاه صنعتی شریف» (صنعتی آریا مهر سابق)این رشته را راه اندازی کردند[۴] که برنامه درسی آنها تفاوت چندانی با برنامه درسی که امروز در رشته مهندسی شیمی ارائه می‌شود نداشت. در سال های بعد، دوره کارشناسی ارشد و در برخی دانشگاه‌ها دوره دکتری مهندسی شیمی نیز راه اندازی شد.[۵]

    ------------------

    -----------------------------------

    --------------------------------------------------------

    گرایش‌های مهندسی شیمی :

    مهندسي صنایع‌ پتروشیمی‌
    صنایع‌ گاز ‌
    صنایع‌ پلیمر‌
    صنایع‌ غذایی‌
    پالایش‌‌
    صنایع شیمیایی معدنی‌
    طرّاحی فرآیند های صنایع نفت
    مهندسی بیوتکنولوژی


     

    + نوشته شده در  پنجشنبه پانزدهم اردیبهشت 1390ساعت 14:4  توسط محمد جواد زراعت شعار  | 

    مهندسی شیمی توانایی ها و کاربرد ها......

     

    برای مهندسی شیمی به عنوان یکی از رشته های فنی کاربردی ، که امروزه گسترش فراوانی پیدا کرده است، از سوی ارگانهای گوناگون تعاریف مختلفی ارائه شده که در زیر به بعضی از آنها اشاره می شود.

    انجمن مهندسین شیمی آمریکا مهندسی شیمی را به صورت زیر تعریف کرده است: «مهندسی شیمی عبارتست از کاربرد اصول علوم فیزیکی همراه با مبانی اقتصادی و روابط انسانی در زمینه هایی که مستقیماّ به فرآیندها و دستگاههای لازمه مربوط می باشند و در آنها ماده به منظور تغییر در حالت، ترکیب یا مقدار انرژی تحت عمل قرار داده شود.»

    همچنین تعریف ستاد انقلاب فرهنگی ایران از مهندسی شیمی به صورت زیر می باشد:
    «فن کاربرد علوم پایه در جهت پیاده نمودن فرآیندهای شیمیایی و فیزیکی در مقیاس صنعتی
    .»

    بنابراین و با توجه به تعاریف فوق ، مهندسی شیمی را می توان تلفیقی از علوم گوناگون مانند ریاضی، شیمی و فیزیک دانست که با در نظر گرفتن فاکتورهای اقتصادی، تولید صنعتی یک فرآورده از طریق فرآیند های شیمیایی و فیزیکی در مقیاس زیاد را طراحی و رهبری می کند
    .

    با نگاهی دقیق تر می توان ویژگی ها و تواناییهای موجود در مهندسی شیمی را به طور خلاصه به صورت زیر دسته بندی کرد:
    -شناخت و بررسی فرآیندهای فیزیکی و شیمیایی متوالی در مسیر تولید.
    -طراحی سیستمها و دستگاههای مورد نیاز در این مسیر.
    -بهینه کردن سیستم از نظر اقتصادی و کیفیت فرآورده ها و ..

    به نظر می آید که با توانایی های بالا، مهندسی شیمی می تواند کاربردهای فراوانی در عرصه های صنعتی و در زمینه های گوناگون داشته باشد. و حقیقت نیز چنین بوده و مهندسی شیمی کاربردهای بسیار زیادی در موارد مختلف دارد. از جمله این کاربردها می توان به موارد زیر اشاره کرد:

    -صنایع نفت، گاز و پتروشیمی
    -صنایع شیمیایی( رنگ، مواد شوینده و …)
    -صنایع کانی غیر فلزی (سیمان، گچ، شیشه، سرامیک و …)
    -صنایع سلولزی (کاغذ،مقوا، چوب)
    -صنایع غذایی و دارویی
    -صنایع فرآوری چرم و پوست
    -تصفیه آب و پساب و…

    باوجود کاربردهای فراوان مهندسی شیمی ، این رشته همواره در حال بسط و توسعه بوده و هر روزه افقهای جدیدتری در پیش روی این رشته قرار می گیرد.یکی از جدیدترین زمینه های به وجود آمده، مهندسی بیوتکنولوژی می باشد
    .

    + نوشته شده در  پنجشنبه پانزدهم اردیبهشت 1390ساعت 14:2  توسط محمد جواد زراعت شعار  | 

    شیمی آلی

    تاریخچه

    واژه غلط انداز " آلی " باقیمانده از روزگاری است که ترکیبهای شیمیایی را ، بسته به این که از چه محلی منشاء گرفته باشند، به دو طبقه غیر آلی و آلی تقسیم می‌کردند. ترکیبهای غیر آلی ، ترکیبهایی بودند که از مواد معدنی بدست می‌آمدند. ترکیبات آلی ، ترکیبهایی بودند که از منابع گیاهی یا حیوانی ، یعنی از مواد تولید شده به وسیله ارگانیسمهای زنده بدست می‌آمدند.

    در حقیقت تا حدود سال 1950، بسیاری از شیمیدانها تصور می‌کردند که ترکیبات آلی باید در ارگانیسم های زنده بوجود آیند و در نتیجه ، هرگز نمی‌توان آنها را از مواد غیر آلی تهیه کرد. ترکیبهایی که از منابع آلی بدست می آمدند، یک چیز مشترک داشتند: همه آنها دارای عنصر
    کربن بودند. حتی بعد از آن که روشن شد این ترکیبها الزاما نباید از منابع زنده به دست آیند، بلکه می‌توان آنها را در آزمایشگاه نیز تهیه کرد.

    بهتر آن دیدند که برای توصیف آنها و ترکیبهایی مانند آنها ، همچنان از واژه آلی استفاده کنند. تقسیم ترکیبها به غیر آلی و آلی تا به امروز همچنان محفوظ مانده است.

    img/daneshnameh_up/4/41/_ggttqq_bild2.jpg

    منابع مواد آلی

    امروزه گرچه هنوز مناسب‌تر است که بعضی از ترکیبهای کربن را از منابع گیاهی و حیوانی استخراج کنند، ولی بیشتر آنها را می‌سازند. این ترکیبها را گاهی از اجسام غیر آلی مانند کربناتها و سیانیدها می‌سازند، ولی اغلب آنها را از سایر ترکیبهای آلی بدست می‌آورند. دو منبع بزرگ مواد آلی وجود دارد که ترکیبهای آلی ساده از آن بدست می‌آیند:
    نفت و زغال سنگ؛ (هر دو منبع به معنی قدیمی خود ، آلی‌اند، زیرا فرآورده های تجزیه و فساد گیاهان و جانوران به شمار می آیند).

    این ترکیبهای ساده بعنوان مواد ساختمانی اولیه مورد استفاده قرار می‌گیرند و با کمک آنها می‌توان ترکیبهایی بزرگتر و پیچیده‌تر را تهیه کرد. با نفت و زغال سنگ بعنوان
    سوختهای فسیلی ، باقیمانده از هزاران سال و تجدید نشدنی ، آشنا هستیم. این منابع ، بویژه نفت ، بمنظور تامین نیازهای پیوسته رو به افزایش ما به انرژی ، با سرعتی نگران‌کننده مصرف می‌شوند.

    امروزه ، کمتر از ده درصد نفت مصرفی در تهیه
    مواد شیمیایی ، بکار گرفته می‌شود. بیشتر آن برای تامین انرژی بسادگی سوزانده می‌شود. خوشبختانه ، منابع دیگر انرژی ، مانند خورشیدی ، زمین گرمایی ، باد ، امواج ، جزر و مد ، انرژی هسته‌ای نیز وجود دارد.

    زیست توده

    چگونه و در کجا می‌توانیم منبع دیگری از مواد اولیه آلی پیدا کنیم؛ بی شک باید به جایی روی آوریم که مبدا اولیه سوختهای فسیلی است، یعنی زیست توده biomass ، ولی این بار بطور مستقیم و بدون دخالت هزاران سال. زیست توده ، تجدید شدنی است، براحتی مورد استفاده قرار می‌گیرد و می‌تواند تا موقعی که بر روی این سیاره زندگی می‌کنیم، تداوم داشته باشد.

    در ضمن عقیده بر این است که نفت خیلی گرانبهاتر از آن است که سوزانده شود.

    ویژگی ترکیبات کربن

    براستی چه ویژگی خاصی در ترکیبهای کربن وجود دارد که لازم است آنها را از ترکیبهای یکصد و چند عنصر دیگر جدول تناوبی جدا کنیم؟ دست کم ، بخشی از پاسخ چنین است: ترکیبهای بسیار زیادی از کربن وجود دارد و مولکول آنها می‌تواند بسیار بزرگ و بسیار پیچیده باشد. شمار ترکیبهای کربن‌دار ، چندین برابر ترکیبهایی است که کربن ندارند. این ترکیبهای آلی را به خانواده هایی تقسیم می‌کنند که معمولا در ترکیبهای غیرآلی ، همانندی برایشان وجود ندارد.

    بعضی از مولکولهای شناخته شده آلی ، هزاران
    اتم دارند و آرایش اتمها در مولکولهای نسبتا کوچک ممکن است بسیار پیچیده باشد. یکی از دشواریهای اساسی شیمی آلی ، یافتن چگونگی آرایش اتمها در مولکولها ، یعنی تعیین ساختار این ترکیبهاست.

    img/daneshnameh_up/2/29/_ggttqq_organicpic.gif

    واکنشها در شیمی آلی

    راههای زیادی برای خرد کردن مولکولهای پیچیده یا نوآرایی آنها بمنظور تشکیل مولکولهای تازه وجود دارد. راههای زیادی برای افزودن اتمهای دیگر به این مولکولها یا جانشین کردن اتمهای تازه به جای اتمهای پیشین وجود دارد. بخشی ار شیمی آلی صرف دانستن این مطلب می‌شود که این واکنشها چه واکنشهایی هستند، چگونه انجام می‌شوند و چگونه می‌توان از آنها در سنتز ترکیبهای مورد نیاز استفاده کرد.

    گستره اتصال اتمهای کربن در ترکیبات کربن

    اتمهای کربن می‌توانند به یکدیگر متصل شوند. گستره اتصال آنها به هم ، به اندازه‌ای است که برای اتمهای هیچ یک از عناصر دیگر ممکن نیست. اتمهای کربن می‌توانند زنجیرهایی به طول هزارها اتم ، یا حلقه‌هایی با ابعاد گوناگون تشکیل دهند. این زنجیرها ممکن است شاخه‌دار و دارای پیوندهای عرضی باشند. به اتمهای کربن در این زنجیرها و حلقه ها ، اتمهای دیگری بویژه هیدروژن ، همچنین فلوئور ، کلر ، برم ، ید ، اکسیژن ، نیتروژن ، گوگرد ، فسفر و سایر اتمها متصل می‌شوند. سلولز ، کلروفیل و اکسی توسین مثالهایی از این دستند.

    هر آرایش متفاوتی از اتمها با یک ترکیب معین تطبیق می‌کند و هر ترکیب دارای مجموعه ای از ویژگیهای شیمیایی و فیزیکی مخصوص به خود است. شگفت‌انگیز نیست که امروزه بیش از ده میلیون ترکیب کربن می‌شناسیم و این که بر این تعداد ، همه ساله نیم میلیون افزوده می‌شود. همچنین شگفت انگیز نیست که مطالعه و بررسی شیمی آنها به تخصصی ویژه نیاز دارد.

    تکنولوژی و شیمی آلی

    شیمی آلی ، زمینه‌ای است که از دیدگاه تکنولوژی اهمیتی فوق‌العاده دارد. شیمی آلی شیمی رنگ و دارو ، کاغذ و مرکب ، رنگینه ها و پلاستیکها ، بنزین و لاستیک چرخ است. شیمی آلی ، شیمی غذایی است که می‌خوریم و لباسی است که می‌پوشیم.

    زیست شناسی و شیمی آلی

    شیمی آلی در زیست شناسی و پزشکی نقش اساسی برعهده دارد. گذشته از آن ، ارگانیسم های زنده ، بیشتر از ترکیبهای آلی ساخته شده اند. مولکولهای "زیست شناسی مولکولی" همان مولکولهای آلی هستند. زیست شناسی در سطح مولکولی ، همان شیمی آلی است.


    img/daneshnameh_up/c/c7/_ggttqq_RotatingC60.gif
    ساختار آلوتروپ جدید کربن:C60

    عصر کربن

    اگر بگوییم که در عصر کربن زندگی می کنیم، دور از حقیقت نیست. هر روز ، روزنامه‌ها توجه ما را به ترکیبهای کربن جلب می‌کنند: کلسترولو چربیهای سیرنشده چند عاملی ، هورمونهای رشد و استروئیدها ، حشره کشها و فرومونها ، عوامل سرطانزا و عوامل شیمی‌درمانی ، DNA و ژنها. بر سر نفت ، جنگها در گرفته است.

    دو فاجعه اسف‌انگیز ما را تهدید می‌کنند، هر دو از تجمع ترکیبهای کربن در
    اتمسفر ناشی می‌شوند: از بین رفتن لایه اوزون که بیشتر ناشی از کلرو فلوئورو کربن‌هاست و اثر گلخانه‌ای از متان ، کلروفلوئوروکربن‌ها و بیش از همه ، دی‌اکسید کربن سرچشمه می‌گیرد. شاید کنایه بر همین مطلب است که نشریه علوم ، برای سال 1990، بعنوان مولکول سال ، الماس را که یکی از شکلهای آلوتروپی کربن است، برگزیده.

    خبر دیگر ، کشف آلوتروپ جدید کربن C60 (باک منیستر فولرن) است که چنین هیجانی در جهان شیمی از زمان " ککوله " تاکنون دیده نشده بود.

    + نوشته شده در  چهارشنبه چهاردهم اردیبهشت 1390ساعت 15:11  توسط محمد جواد زراعت شعار  | 

    شیمی پلیمر

    تصویر

    ریشه لغوی

    واژه پلیمر از دو واژه یونانی Poly و Meros مشتق شده است و به معنی بسپار است.

    مقدمه

    بشر نخستین ، آموخته بود چگونه الیاف پروتئینی پشم و ابریشم و الیاف سلولزی پنبه و کتان را عمل آورد، رنگرزی کند و ببافد. بومیان جنوبی از لاستیک طبیعی ، برای ساختن اشیاء کشسان و پارچه‌های ضد آب استفاده می‌کردند. پلی کلروپرن ، نخستین لاستیک سنتزی است که در آمریکا تهیه شد و گسترش یافت. پلی بوتادین ، نخستین کائوچوی سنتزی است که آلمانی‌ها به نام بونا- اس به مقدار کافی تهیه کردند. بوتیل کائوچو ، یکی از چهار لاستیک سنتزی است که اکنون به مقدار بیشتری تهیه و مصرف می‌شود.

    تاریخچه

    نخستین لاستیک مصنوعی ، سلولوئید است که از نیترو سلولز و کافور توسط "پارکر" در سال 1865 تهیه شد. ولی در سال 1930، عمل پلیمریزاسیون و الکلاسیون کشف شد و در صنعت بکار گرفته شد. در این دوران ، آمونیاک برای تولید مواد منفجره ، تولوئن برای TNT و بوتادین و استیرن برای تولید لاستیک مصنوعی به مقدار زیادی از نفت تولید شد.

    سیر تحولی

    استات سلولز در سال 1894 توسط "بران دکرس" سنتز شد و در سال 1905 توسط "میلس" کامل شد. در سال 1900، "رم" ، پلیمریزاسیون ترکیبات آکریلیک را آغاز کرد و در سال 1901، "اسمیت" نخستین فتالات گلسیرین (یا فتالات گلسیریل) را تهیه کرد. در اواسط قرن بیستم در آلمان ، "اشتودینگر" ، قانون مهم ساختار مولکولهای بزرگ را وضع کرد. در سال 1934، کارخانه (ICI) موفق به تهیه مولکولهای بزرگ پلی اتیلن شد.

    "دوپن" بطور منظم در زمینه تراکم مواد بررسیهایی انجام دارد که در نتیجه ، به تهیه پلی آمیدها یعنی الیاف
    نایلون نایل شد و الیاف پلی آمید را از کاپرولاکتام تهیه کرد که به الیاف پرلون شهرت یافت.

    نقش و تاثیر پلیمرها در زندگی

    کاغذ ، چوب ، نایلون ، الیاف پلی استر ، ظروف ملامین ، الیاف پلی اتیلن ، اندود تفلون ظروف آشپزی ، نشاسته ، گوشت ، مو ، پشم ، ابریشم ، لاستیک اتومبیل و... ، ماکرومولکولهایی هستند که روزانه با آنها برخورد می‌کنیم.

    تصویر

    مفاهیم مرتبط با شیمی پلیمر

    در مورد پلیمرها با مفاهیمی همچون خواص فیزیکی و مکانیکی ، مکانیسم پلیمر شدن ، فرآورش پلیمرها روبرو هستیم.

    خواص فیزیکی و مکانیکی پلیمرها

    در بر گیرنده مفاهیم زیر است:

    مورفولوژی ، رئولوژی ،
    انحلال پذیری ، وزن مولکولی ، روشهای آزمودن ، روشهای شناسایی.

    مکانیسم پلیمری شدن

    از سه طریق زیر است:

    پلیمرشدن تراکمی ، پلیمرشدن افزایشی ، کوپلیمرشدن.

    فرآورش پلیمرها

    در برگیرنده مباحث زیر است:

    پر کننده‌ها ، توان دهنده‌ها ، نرم سازها ، پایدار کننده‌ها، عمل آورنده‌ها ، رنگ‌ها و غیره.

    شاخه‌های شیمی مرتبط با شیمی پلیمر

    شیمی پلیمر با مباحث زیر در ارتباط است:


    چند کاربرد مهم پلیمرها

    پلی آمید (نایلون)

    برای تهیه الیاف ، طناب ، تسمه ، البسه ، پلاستیک صنعتی ، جایگزین فلز در ساخت غلتک یا تاقان ، بادامک ، دنده ، وسایل الکتریکی بکار می‌رود.

    پلی استر

    بصورت الیاف ، جهت تهیه انواع لباسها ، نخ لاستیک ، بصورت لایه برای تهیه نوار ضبط صوت و فیلم بکار می‌رود.

    تصویر

    پلی اتیلن (کم‌چگالی ، شاخه‌دار)

    بصورت لایه ورقه در صنایع بسته بندی ، کیسه پلاستیکی ، الیاف پارچه بافتنی ، بسته‌بندی غذای منجمد ، پرده ، پوشش پلاستیکی ، عایق ، سیم و کابل ، بطری بکار می‌رود.

    پلی استیرل

    برای تهیه رزینهای تبادل یونی ، انواع کوپلیمرها ، رزینهای ABC ، مواد اسفنجی ، وسایل نوری ، وسایل خانگی ، اسباب بازی ، مبلمان بکار می‌رود.
    + نوشته شده در  دوشنبه دوازدهم اردیبهشت 1390ساعت 15:13  توسط محمد جواد زراعت شعار  | 

    کاربردهای مهندسی شیمی در پزشکی

    مهمترین کاربردهای مهندسی شیمی در پزشکی را می‌توان به چهار گروه زیر تقسیم کرد:


    1 سیستمهای کنترل انتقال دارو: در بیشتر این سیستمها با استفاده از محملهای بسپاری سرعت آزاد شدن دارو در بدن، بهینه و اثرهای نامطلوب جانبی کاهش داده می‌شود و در موارد ویژه دارو در نقاط عمل متمرکز می‌گردد.


    2 اندامهای مصنوعی بدن: این اندامها نوع اول جایگزین عضوی در بدن شده و همواره بیمار هستند که از آن جمله می‌توان دریچه قلب مصنوعی، شنتهای گوناگون و لنزهای چشمی را نام برد. نوع دوم دستگاههایی هستند که وظیفه یک اندام خاص در بدن را انجام می‌دهند.


    3 مهندسی بافت ساختارهایی از بدن: شامل پنج شاخه، کشت سلول در بدن، ساخت بافتهایی از بدن، ساخت پوست در زیست واکنشگاه، پوشش دادن اندامهای مصنوعی و مدل کردن رفتارهای سلولی است.


    4 مدلسازی بدن: با مدل کردن بدن می‌توان پدیده‌هایی را که در بدن رخ می‌دهند شناسایی کرده، عاملهای بسیاری از بیماریها را تعیین کرده و روشهای درمان مؤثری را ارایه داد. همچنین یافتن مدلی برای رفتارهای طبیعی بدن در بیشتر موارد مبنای ساخت اندامهای مصنوعی می‌شود.

    من که نمیدونستم.جالب بود نه؟
     

    منبع:www.chemicalengineering1.persianblog.ir

    + نوشته شده در  دوشنبه دوازدهم اردیبهشت 1390ساعت 14:23  توسط محمد جواد زراعت شعار  |